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In the sections below, we provide additional details and evidence in support of the statements made
in the main text. In section ” Approximations in equations 4 and 5”7, we clarify the approximations used
in the main text. In secton ”Why does PMM underestimate the correlation between PPs in the UK-
data?”, we investigate in some depth the observed bad fit of the PMM model to the UK data. In section
“Analysis of bias in H?-estimates in the toy-model simulations”, we explain in detail the causes of bias
in H?-estimators, which were encountered in the toy model simulations. In section “Covariance between
donor and recipient values in the toy model”, we show analytically that in a neutral drift scenario, when
all pathogen strains are encountered at equal frequencies, the covariance between donor and recipient
values decays exponentially with the evolutionary time, d;; between the moments of trait measurement.
In section “Choosing the threshold phylogenetic distance d;;" in ANOVA-CPP”, we discuss the choice of
threhold on d;; (e.g. d;;’ =D, and d;;’=10"*) when defining closest phylogenetic pairs. Supplementary

tables and figures are provided at the end of this document.

Approximations in equations 4 and 5

To express the correlation in phylogenetic pairs under the PMM and the POUMM ML fits as functions

of d;; (eq. 4 and 5), we applied three approximations:

e In eq. 2 and 3, we replaced ¢t by the mean root-tip distance in the tree, £. This approximation was
reasonable, because the mean root-tip distance did not vary substantially between different strata (fig.
3). The mean root-tip distance was 0.15 in the left-most decile going gradually down to 0.14 in the right-
most decile. We also performed linear regression of the root-tip distance, ¢, on the phylogenetic distance,
d;; in the 1917 PPs. This was significant but with negligible slope and coefficient of determination

A~

((t)=0.15—-0.13*d;;, p<0.01, R, =0.01), showing that PPs of all phylogenetic distances were spread

nearly uniformly across the tree. Substituting ¢ with its linear regression on d;; instead of ¢ did not

result in any noticeable difference and is not reported.
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e Ineq. 2 and 3, we used the relationship between ¢;; and d;;. This was the only way to incorporate d,; in
eq. 2. In an ultrametric tree, t;; is an exact linear function of d;;, namely, t;; =t —0.5d,;, where ¢ is the
root-tip distance. In the non-ultrametric UK tree, the OLS regression of ;; on d;; was t;; =0.15—0.63d,;,
p<107'%, R2, =0.24.

e In eq. 3, we approximated exp(—8.35+36.47d;;) with 0, which was a valid approximation on the scale
of the other terms in the equation and for the range of phylogenetic distances (d;; €[0,0.14]) in the UK

tree.

The above approximates were validated visually by comparing the analytical curves corresponding to

equations 4 and 5 with the corresponding brown and green points and error-bars on fig. 3.

Why does PMM underestimate the correlation between PPs in the UK data?

We have shown in the main text that, the phenotypic correlation between members of phylogenetic
pairs depends on their phylogenetic distance, d;;: members of pairs with small d;; tend to have higher
phenotypic correlation compared to members of pairs with big d;; (fig. 3). For PMM, the only way to
incorporate this information is indirect, namely, through the relationship between d,; and the root-mrca
distance, ¢;;. In the non-ultrametric UK tree, this relationship is rather weak: the slope of the OLS
regression of d;; on t;; equals -0.37 and is significant (p <0.01) but the coefficient of determination of this

regression, Ry, is (only) 0.24 (fig. S2A). Thus, the principal source of information for fitting the PMM

2 and o2, is the assumed linear relationship between the observable correlation between

parameters, o
pairs of tips and the two distances involved in eq. 2: the root-mrca distance ¢;; and the root-tip distance,
t. Noticing that the correlation between the lg(spVL)-values in phylogenetic pairs is a covariance to
variance ratio (eq. 2 and 3), we analyze how PMM fits to these two components in the UK data (fig. S2
B and C). The panels B and C on fig. S2 show that the covariance and the variance progress at different
rates with t;; and ¢ respectively. PMM is not able to model this difference in the rates, because it uses a
single parameter, o2, to model both of them. We notice that the ML estimate for o fits well to the linear
increase in the variance (parallel brown and black lines on fig. S2C) but underestimates the increase in
the covariance (non-parallel brown and black lines on fig. S2B). This indicates that a linear model of
the covariance as a function of ¢;; is rather inappropriate and no particular value for o2 could result in
a better fit (higher likelihood). As a result, the penalty on the PMM likelihood is minimized when the
parameter o2 is fit to the increase in the variance, neglecting the covariance. Finally, this leads to the

observed underestimate of the correlation in the closest phylogenetic pairs.
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Analysis of bias in H?-estimates in the toy-model simulations

In order to understand the origin of the bias in the different toy-model scenarios, we used variance
decomposition into the heritable component, 0% and the non-heritable component o%. Most of the biases
observed on fig. 4 could be explained by a bias in one or both of these two components. The main source
of these biases was the within-host evolution causing a decrease in the measured covariance between
donor-recipient partners or phylogenetic pairs. Also, we identified various sampling biases introduced by
within-/between-host selection and filtering of the data. We clarify these sources of bias in the following

subsections.

Neutral evolution of the trait within hosts

This phenomenon consists in a random change of the trait value caused by pathogen mutation. As a
result, the phenotypic correlation between donors and recipients tends to decrease. We show later that,
in a neutral scenario, this correlation decay is expected to be exponential in the phylogenetic distance,
d;;. As a result, all H?-estimators neglecting or improperly modeling this decay are negatively biased.

The most affected estimators are by, ra.q,,, Hpy(t) and Hg,,,. (fig. 4); see also the decreasing sample

ij )

donor-recipient covariance $(Zgon,2rep) on fig. S4.

Directional selection within a host

This phenomenon consists in mutant strains contributing to a higher trait value, e.g. strains with higher
reproductive capacity in the case of viral load, getting selected within each host. As a result a population
of newly infected hosts tends to have higher genotypic variance than a population of hosts which have
undergone within-host evolution (notice s?(G,ep0)>s*(G) on fig. S4B). This explains the positive bias
of by with respect to H? on fig. 4B in the main text. Another possible effect of within-host selection is
a convergent evolution in donors and recipients towards strains, which have higher fitness on average in
the population. Intuitively, this could lead to a slight increase in phenotypic covariance and, therefore, a
positive bias in b. Such a bias was not obvious in the toy-model simulations (S(Zaon.0,2rep.0) > S(Zdon, Zrep)
in all simulations, fig. S4B), because the convergent evolution was leading to a decreasing overall genetic

and phenotypic variance in the population (see decreasing s*(G) and s*(z) with d;; on fig. S4B and S5B).

Stabilizing selection between hosts

In case the trait is positively correlated with pathogen load, virulence and per contact transmission rate,
hosts with very high pathogen load tend to be more infectious but stay infectious for a short period
of time due to earlier diagnosis or death; hosts with very low pathogen load are infectious for a longer
time but transmit very rarely. Thus, hosts with intermediate values of pathogen load have the highest
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transmission potential on average (Fraser et al. 2007). This leads to a sampling bias in donor-recipient
estimators - the donors have a narrower distribution than the overall population (s*(z4.,) < s*(z) on Fig.
S5C). Intuitively this should lead to a positive bias in by with respect to H? (because the denominator
(5?(Zdon ) is smaller). However, this was not confirmed by the toy-model simulations because the genotypic
variance in the donor-recipient values at the moment of transmission was also smaller than that at the

population level ($(zgon.0s2rep0) & 8%(Go) <s?(G) on fig. S4C).
Combined within- and between-host selection

This results in a combination of the sampling biases due to each of the two selection phenomena (previous

subsections).

Non-stationary trait distribution during the epidemic

The density of the trait values evolves during the epidemic due to continuous change in the frequencies
of the different pathogen strains, introduction of new strains through de-novo mutation, change in the
frequencies of infected host types and a number of demographic factors such as migration, prevention,
diagnosis and treatment. Thus, the broad-sense heritability, H2, is a dynamic property of the population
which changes through time. The direct estimator Ridj obtained over a grouping by identical strain
in patients sampled at different times has the meaning of a summary statistic averaging over the time
of the epidemic. Plotting the phylogenetic estimators Hz,,(0,0.,t) and H;(a,0,0.,t) over time can
help understanding the above dynamics. This, however, depends strongly on the goodness of fit of the

phylogenetic model (e.g. BM or OU) to the data.

Violation of phylogenetic model assumptions

The phylogenetic estimates of heritability are valid only if the model assumptions are at least partially
met. For example, in this article, we have shown how an inaccurate assumption about the form of the
correlation between two tips in the PMM model can lead to a significant negative bias in phylogenetic
heritability.

Clarifying the observed positive bias in r4[id]

Here we demonstrate a positive bias in 7, with respect to R2, for small number of groups (genotypes)
K. We show that this bias vanishes for bigger values of K, i.e. K >24, given that the genotypic values
are sampled from a normal distribution. For each K €{3,6,12,24,48} we simulate 100 datasets with K
genotypes and varying number of carriers for each genotype. We draw genotypic values from a normal
distribution and add random (white) noise to them to construct the phenotype. After estimating R?,

R2

2q; and 74 for each dataset, we report the average values for each K.
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library(data.table)

library(patherit)

# grand mean and variance of group effects
mu <- 3.5

sigma2a <- .2

# within-class wvariance

sigma2e <- 0.36

#number of simulated data-sets with K groups and ni individuals per group
nlter <- 100

# make results reproducible
set.seed(20)

test <- list()

# number of classes/groups
for(X in c(3, 6, 12, 24, 48, 96)) {

test[[as.character(K)]] <- t(sapply(l:nIter, function(iter) {
# sample group means at each iteration from a mormal distribution
ai <- rnorm(K, mean=mu, sd=sqrt(sigma2a))
# numbers of sampled individuals per group
ni <- sample(20:50, K, replace=TRUE)
# generate data
data <- data.table(g=do.call(c, lapply(1:K, function(k) rep(k, ni[k]))), key=’g’)
datal, z:=rnorm(nilg], mean=ailg], sd=sqrt(sigma2e)), by=gl]
datal, G:=mean(z), by=g]
datal, e:=z-G]
rAValues <- rA(epidemic=NULL, data=data, GEValues=NULL, by=’g’, report=TRUE)
with(rAValues, datal, c(K=K, H2true=sigma2a/(sigma2a+sigma2e),
R2=var(G) /var(z), R2adj=1-(N-1)/(N-K)*var(z-G)/var(z),
rA=H2aov)])
)
}

t (sapply(names(test), function(K) {
colMeans (test [[K]])
j2))

#i# K H2true R2 R2adj rA
# 3 3 0.3571429 0.2304160 0.2147992 0.2768490
# 6 6 0.3571429 0.2987824 0.2816688 0.3181378
## 12 12 0.3571429 0.3475622 0.3298251 0.3494137
## 24 24 0.3571429 0.3622040 0.3441696 0.3539454
## 48 48 0.3571429 0.3655049 0.3472988 0.3522200

## 96 96 0.3571429 0.3720558 0.3537375 0.3562131

2

aqj ON average, in particular for small values of K, i.e. K <12.

The results show that r4 dominates R,

For bigger K, the two estimators are asymptotically equal.



Mitov and Stadler M B E

Clarifying the observed difference between H%,,(t) and Hz,,, in toy-model simulations

As another detail, we notice that the expected correlation under the PMM ML fit, rz,,, was significantly
positively biased with respect to the correlation, 4, measured in PPs (brown line versus brown dots on
fig. S7). Investigating these cases, we found that these positive biases were due to the use of the mean
root-tip distance ¢ in the formulation of rzy; (eq. 2), the bias being less pronounced if using the median or
a higher quantile of the root-tip distance. Since, at d;; =0, 7z is equal to the phylogenetic heritability,
Hz),(t), in these cases, we observe a value of Hp),(#) closer to the true heritability value, R, (black
horizontal line on fig. S7). This could lead to a wrong conclusion that H3,,(f) is less biased than Hz,,,.
In fact though, this is merely the effect of cancelling out two biases with opposite directions. Compared

to the PMM, the POUMM produced a better fit to the decaying correlation in all simulations (green

dots and error-bars on fig. S7).

Covariance between donor and recipient values in the toy model

One of the main results of this article is the observation that the accuracy of a heritability estimator
depends strongly on how it accounts for the within-host evolution of the pathogen taking place between
transmission events and measurement. This becomes obvious from the fact that both, real data and the
toy model simulations, showed a pattern of decaying correlation between phylogenetic pairs as a function
of their phylogenetic distance, d;; (fig. 3 and fig. S7). Is this pattern of decaying correlation a general
characteristic of epidemics? Here, we use a simplified version of the toy model allowing an analytical
approach to this question.

We consider a version of the toy model, in which there is one SNP in the pathogen genotype with
two possible alleles and there are two possible host-types. We denote the four genotypexhost-type
combinations as subscripts 00, 01, 10, 11, where the first index denotes the pathogen genotype and the
second index denotes the host-type. The trait values are denoted as zyg, 201, 210 and z11; the frequencies
of the four genotypexhost-type combinations in the populations are denoted as fy9, fo1, fio and fi;. We
use the symbol fq= foo+ fi0 to denote the total frequency of host-type 0 and f.;= fo1+ f11 to denote
the total frequency of host-type 1. We assume that the evolution of the pathogen strain within a host
follows random drift - at time d,;/2 after infection, the strain infecting a host has been substituted by a
mutant strain with probability v, regardless of the trait value before and after substition; the strain has
remained unchanged with probability 1—wv.

This mechanism of within-host mutation is summarized on fig. S9A. For simplicity, we assume a
generation-based dynamics, in which transmission to new susceptible hosts occurs at fixed moments in
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time separated by a period d;;/2. At every generation, each member of the infected population transmits
his/her currently carried pathogen to a random susceptible individual and becomes uninfectious,
(although, he/she remains infected with the pathogen). The recipient host transmits his infection at
the next generation and becomes uninfectious on his turn. We assume an infinite susceptible pool with
fixed frequencies of the two host-types. Given that there is no selection with respect to host-type, we can
assume that the frequencies of the host-types in the infected population equals the host-type frequencies
in the susceptible population. The frequencies of the two pathogen strains in the infected population can
evolve as a result of within-host mutation. However, in the absence of within-host selection, the strain
frequencies conditioned on host-type would equalize several generations after the onset of epidemic.
With the above simplified version of the toy model, it is possible to express the covariance between
a donor and recipient trait value at time d,;/2 after the transmission has taken place. We do this in
two steps: first, we express the covariance in terms of the substitution probability v; then, we use a
2-nucleotide form of the Jukes-Cantor 69 substitution model to express v in terms of evolutionary time.
Denoting the donor value by z4,, and the recipient value by z,.,, we start from a known property for the

covariance:

Cov<zdon7zrcp) = E[zdonzrcp] - E[Zdon]E[zrcp]

In the case of neutral evolution and sufficiently large population size, we can assume that donors and

recipients share the same frequencies of genotype x host-type combinations. Thus, we write:

E[z4on] = E|2cp] = foozoo + fo1201 + frozio+ fi1211

To obtain the expectation of the product zgon2,cp, it suffices to sum up all possible products of donor

and recipient values weighted by their expected frequencies (fig. S9A):
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ElZionzrep) = foo( (1=v)fo(l=v)z00200+ (1 —v) fovzeozio+ (1 —v) f1(1—1) 200201 + (1 —v) f1v 200211+
vfo(l—v)z10200 +V fovzi0210+V fa (1—1/)210201+Vf.1y210211>+

( (1—=v)fo(l=v)201200+ (1 =v) fovzorzi0+ (1 —v) fa(1=v) 201201 + (1 = V) favzo 211+
vfio(l—v)z11200+V fovzi1zi0+ v fa (1—1/)z11201—|—1/f.11/zuzu>+

f10< (1=v) fo(l=v)z10210+ (L —v) forzi0200 + (1 —v) f1(1—v) 210211 + (1 —v) favziozo +
vfo(1=v)200210+V foVz00200 +V [ (1—V)200211+Vf~11/200201>+

< o(1=v)znzi0+(1—v) forvziizoo+(1—v) fa(1—v) 211201+ (1—v) favziizo+
Vf,()(l—I/)Z01210+Vf.0V201Z00+Vf,1<1—Z/)Z()lzn+Vf.1V2’012’01>

Taking the difference of E[zgon2rep] — E[Zdon] E[2rep] and grouping on the degrees of v, we obtain a

polynomial of degree two of v:

Cov(24on,2rep) = AV* + Bu+C

The coefficients A, B and C' are algebraic expressions of the frequencies and trait values:

A = (foo(z00 = 210) + f10(200 = 210) + (for + fi1) (z01 — 211)) (0 (200 — 210) + fi1 (201 — 211))

B = 2f10f-02002’10+f11f-0201210+f10f»12’01210—2f10f-02%0+f11f-02’00211+
frof 1200211+ 2 11 f1201211 — 2f11 foz10211 — 2 f10 f1 210211 — 2 11 122+
Jo1(2f1201(—201+211) + f.0(—2200201 + 201210 + Z00211) )+
foo(—=2f.0200(200 — 210) + f-1 (—2200 201 + 201210 + Z00211))

C = foof o250+ for fozo0z01 + foo 1200201 + for f125, + frofo2io+ fi1fozi0z1+
frofazozn+ finfazd — (foozoo + forzor + frozio+ fizi)?

In the case of neutral drift, foo= fi0 and fo; = fi1. Substituting 1— f, for f.,, the expression for the

covariance simplifies to:

1
Cov(ZdonsZrep) = Z(l - 2’/)2(201 — 211+ f-0(200 — 201 — 210 +2’11))2

Assuming a two-nucleotide Jukes Cantor 69 model with mutation rate A, the probability of mutation
at a site in the genetic sequence is expressed as a function of evolutionary time v(¢t)=0.5—0.5exp(—At)
(Yang, 2006). Thus, in the case of neutral drift, the covariance between the donor and the recipient
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value at time d;;/2 after the transmission can be expressed in terms of the total evolutionary time, d;;,

separating the two hosts:

1
Cov(ZdonsZrep) :eXp(_)\dij)Z(zm —z11+ f.0(%00 — 201 — 210 +211))2

The above expression for the covariance between donor and recipient values represents an exponential
decay function of d;; - it has a non-negative value at d;; =0 and converges exponentially towards 0
as d;; —oo. It is interesting to ask wether the above pattern of exponentially decaying covariance is
preserved in the case of multiple loci (many possible pathogen genotypes) as well as in cases of within-
and between-host selection. An analytical treatment of this question is beyound the scope of this article.
However, using simulations of the toy model, we have shown that the pattern of exponential decay seems
to be preserved in the case of the neutral/neutral scenario, that is, when each pathogen genotype is
encountered at equal frequency for each host-type (fig. S7). Biologically, this reflects a situation, where
the donor and recipient host exhibit similar trait values shortly after transmission, but later on tend
to have uncorrelated values as a result of random mutation in the two hosts. In infinite time after the
transmission, the correlation between the two hosts’ trait values should converge to 0. In the cases of
within- or between-host selection, the covariance between the trait values of a donor and a recipient would
be influenced by additional factors such as similar age, race or habitat. This can result in convergent
evolution of the pathogens within the two hosts towards strains which are best adapted to the shared
environmental conditions. In this case, the covariance would deviate substantially from an exponential
decay function of d;; and is even not guaranteed to converge to 0. This reaffirms that any parametric
model of the covariance (and therefore, correlation) between transmission couples needs to be validated

against empirical estimates (see fig. 3 and Fig. S2).
Choosing the threshold phylogenetic distance di]-' in ANOVA-CPP

Choosing an appropriate value for the threshold d;;’ is one of the tricky aspects of ANOVA-CPP. This
choice is a trade-off between minimizing the negative bias due to within-host evolution (d;;" close to 0)
and maximizing the precision in terms of narrow confidence interval. While it is impossible to measure
the bias in the absence of knowledge about the true value, there are ways to measure the precision, e.g. by

taking the length of the 95% confidence interval. Thus, one way to define an optimality criterion is “the

minimum value of d;;, for which the 95% confidence interval is narrower than some predefined length”.
A practical way to do this is to consider different stratifications of the phylogenetic pairs as shown on
fig. S1. In the toy-model simulations, we have chosen the first decile, i.e. d;;'= D, because this threshold

9
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was suitable for demonstrating the negative bias due to within-host evolution (i.e. a difference between

bp, and bg,; and loss of precision). In the real HIV data, the choice dij':10‘4 was based on empirical

1

observations (see text and fig. 5).
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SUPPLEMENTARY TABLES
Table S1. PMM and POUMM fit to lg(spVL) data from the UK HIV cohort.
N | Model | AICc | Type 9o o 0 o o. H?(t) H?
MLE 4.49 - ; 0.65 0.84 0.08 0.06
= %
z | Mean | 4.49 _ ; 0.67 0.83 0.08 0.06
= “ | app [4.31, 4.66] - - 0.5, 0.84] | [0.82, 0.85] | [0.05, 0.12] | [0.02, 0.1]
) = | MLE 5.54 28.78 4.45 2.97 0.77 0.21 0.2
§ < | Mean | 544 - - 3.11 0.77 0.21 0.21
= T [4.06, 7.25] | [16.64, 46.93] | [4.41, 4.49] | [1.95, 4.37] | [0.73,0.8] | [0.14, 0.29] | [0.13, 0.29]
11
—a
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Table S2. Within- and between-host dynamics of the toy epidemiological model.

Scope | Parameter neutral select
Natural birth rate A=117.6
Natural per capita death rate uw=1/850
+
é Per capita recovery rate p=1/48
o .
?g Per capita contact rate /16{%, i, %, %, 1—10, 1—12
E Per capita risky contact rate (S: SXkK
current proportion of susceptible
in the pop.)
Per risky contact transmission | Vaeutral=-45 | Y(2)="Ymin + W, where
probablhty Ymin = °37 Ymax = -67 Y50 = ]-037 Tk = 1.4
Per capita death rate for infected | dpeuprar =-01 0(z)=p+ Dm“ig:ﬁ: 11(3111)([;;0) 5, where
individuals Diin=2,D,10x =300, D50 =10%,D,, = 1.4
" Per locus pathogen mutation rate | Vjeyqa =.01 v(z)= %, where Vpax=.2,V50=
o}
-~ ].03, n=1.4
i
§ Rate of substitution of strain
x; for x;, where x;,#x; at a _ Vneutral e
Sa v =3 EAYEN
single locus, [, M; is the number §uij(2i,25) = _
0 , otherwise
of alleles at locus I, and the
corresponding values are z; and z;

12
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SUPPLEMENTARY FIGURES
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FIG. S1. Different stratifications of the phylogenetic pairs in the UK tree. A - box-plots of the trait values show

nearly identical distributions (equal mean and interquartile range) in the different strata. B - correlation profiles in different
stratifications. Black and magenta points with error-bars denote the estimated r 4 and rg, in the real data. Dashed horizontal

bars denote the 95% CI for r 4 evaluated on all phylogenetic pairs. A black and a magenta inclined line denote the least
squares linear regression of r 4 and r Sp on the mean phylogenetic distance, dl]7 in each decile. Brown and green points with
error bars denote the estimated values of r 4 obtained after replacing the real trait values on the tree by values simulated

under the maximum likelihood fit of the PMM and the POUMM methods respectively (mean and 95% CI estimated from
100 replications). A brown and a green line show the expected correlation between pairs of tips at distance d;; i, as modeled

hdider the ML-fit of the PMM and the POUMM (eq. 2 and 3). A light-brown and a light-green region depict the 95% high
posterior density (HPD) intervals inferred from Bayesian fit of the two models (”Materials and methods”).
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FIG. S2. Bias in the PMM estimate for the correlation in phylogenetic pairs A: A scatter plot and OLS regression
of dj; on t;; (slope -0.34 (p<0.01), dej:0'24)' Points in magenta denote CPPs (d;; <1074); B: covariance modeled as
a function of ¢;;. Black points and error-bars denote the sample covariance and 95% CI upon a stratification in deciles of
tij. Brown and green points and error-bars denote the mean and 95% CI upon replacing the lg(spVL)-values with values

simulated under the ML fit of the PMM and the POUMM (100 replications). A black line going through the origin denotes
the OLS regression with 0 intercept to the real data. A brown and a green line with brighter surrounding regions denote
the covariance and its 95% HPDs under the PMM and the POUMM respectively. The latter have been obtained from the
expressions for the nominator in eqs. 2 and 3 using the ML estimates and posterior samples for the model parameters. In
the case of the POUMM, the phylogenetic distance dij has been replaced by the linear regression of dz‘j on t;; from the

phylogenetic pairs (panel A). The slope of the brown line equals the parameter o2 of the PMM. Notice the negative bias
with respect to the OLS fit (black line). C: variance of the trait values at the tips of the UK tree modeled as a function
of the root-tip distance, t. Black points and error-bars denote the sample variance and its 95% CI in the real data, upon a
stratification in deciles. Brown and green points and error-bars denote the mean and 95% CI upon replacing the lg(spVL)-
values with values simulated under the ML fit of the PMM and the POUMM (100 replications). A black line denotes the
OLS regression of the variance in the real data on ¢. A brown and a green line with brighter surrounding regions denote
the variance and its 95% HPDs under the PMM and the POUMM respectively. The latter have been obtained from the
expressions for the denominator in egs. 2 and 3 using the ML estimates and posterior samples. As in panel B, the slope of

the brown line equals the parameter o2 of the PMM. The distances t;; and d;; are measured in substitutions per site (sps).
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FIG. 83. Mean phylogenetic distance d;; between PPs in the toy-model simulations
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FIG. S4. Estimating the genotypic variance in toy-model simulations. sQ(G): true genotypic variance calculated

from grouping by identical genotype; s2 (Gp): true genotypic variance calculated from grouping by identical genotype in the
sample of known donor-recipients, taking their genotype and trait values at the moment of transmission; s(zgon,0,2rcp,0):

empirical covariance between donors and recipients at the moment of transmission; s2 (GTCP’O): true genotypic variance in
recipients at the moment of getting infected; s(zgyy,,2rep): donor-recipient covariance at moment of diagnosis (including
measurement delay); Varpg ) (f;0): estimated PMM genotypic variance at ¢ according to eq. 16; Vargy,: estimated PMM

genotypic variance based on the difference s2(z) — 62 in the ML fit of the PMM; s2(z BMsim) — 62 estimated PMM genotypic
variance based on the difference of the mean trait variance in 100 simulations of the ML PMM fit on the tree and the ML
value of the parameter o¢; Varpg; (t; «,0): estimated POUMM genotypic variance at ¢ according to eq. 17; Varpgy,: estimated

POUMM genotypic variance based on the difference 52(z) — &2 in the ML fit of the POUMM; 52(z0 sim) —62: estimated
POUMM genotypic variance based on the difference of the mean trait variance in 100 simulations of the ML POUMM fit

on the tree and the ML value of the parameter Ug.
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FIG. S5. Phenotypic variance in the toy-model simulations. s2 (2): sample variance of the trait value in the entire

sampled population; 32(20): sample variance in the sampled donor-recipient couples taking the trait values at

of infection; 52 (Zdon,()): sample variance in the donors from donor-recipient couples, taking the trait values at

of infection; 52(zrcp,0): sample variance in the recipients from donor-recipient couples, taking the trait values at

of infection; sQ(zdon): sample variance in the donors from donor-recipient couples, taking the trait values at

of diagnosis; s2 (2rcp): sample variance in the recipients from donor-recipient couples, taking the trait values at

moment

moment

moment

moment

moment

of diagnosis; Varg ) (f;0,0¢) =o2i+ ag: expected phenotypic variance under the ML fit of the PMM at the mean root-tip

distance t; 2 (2B M sim): mean sample trait variance from 100 simulations of the ML PMM fit on the tree; Varpy (t; o,0,0¢) =

2

Q

N
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§“(20U sim): mean sample trait variance from 100 simulations of the ML POUMM fit on the tree.

Lz(l—exp(—Zat)—i—og: expected phenotypic variance under the ML fit of the POUMM at the mean root-tip distance ;
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FIG. S6. Details of the PMM and POUMM ML fits to the toy-model simulations. A: comparison beween the
true population mean (wide boxes in the background) to the mean-value expected under the PMM method (brown) and
the long-term mean value, 6 expected under the POUMM method (green); B: Estimates for the parameter « in the toy-
model simulations; C: estimates for the parameter oe of the PMM (brown) and the POUMM (green) compared to the
non-heritable standard deviation estimated from grouping by identical genotype; D: comparison of the corrected Akaike
information criterion for the PMM and the POUMM fits - positive values indicate lower (better) AICc for the POUMM
method.
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FIG. S7. Correlation in phylogenetic pairs and donor-recipient couples in toy-model simulations. Each panel
displays the correlation as a function of d;; in a randomly chosen epidemic for a given scenario and mean contact interval,

1/k. In each simulated epidemic, we consider the population of the first 10,000 diagnozed individuals. In this population,
the exact transmission tree and transmission couples are known. A black horizontal line represents the true value of H 2
measured by the direct estimator Rgdj' Dots and vertical bars display point-estimates and 95% ClIs of r 4 in the PPs and
of b in the donor-recipient couples upon a stratification into quintiles of dij- Black: r4 in PPs; brown: r4 in PPs after

replacing the trait-values simulated under the toy-model with values simulated under the ML fit of the PMM; green: r 4 in
PPs after replacing the trait-values simulated under the toy-model with values simulated under the ML fit of the POUMM;
cadet-blue: b in donor-recipient’s; grey (only for dij =0): by in donor-recipient’s based on trait-values at moment of infection.

A brown and a green line indicate the correlation between tip-pairs in the tree expected under the ML fit of the PMM and
POUMM respectively.
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FIG. S8. Trace-plots and posterior densities from the POUMM MCMC-fits to HIV from the UK cohort (8483
patients). Three MCMC chains have been executed: 1 - sampling from the prior distribution; 2 and 3 - sampling from the
posterior distribution. (A) Trace-plots - the randomness and the lack of time-correlation in the traces show the correct mixing
of the MCMC chain; (B) Inferred posterior densities. The clear distinction between prior and posterior densities proves the
presence of informative signal in the data. The match between the densities from chain 2 and 3 proves the convergence of
the MCMCs towards the posterior distribution. This convergence was also validated through the Gelman-Rubin statistic
being nearly equal to 1 (results not shown).
21
—®



Mitov and Stadler M B E

FIG. S9. Expected couples of donor-recipient trait values at dij/2 past transmission Red circles denote donors,

blue circles denote recipients. Red vertical arrows denote transmission. Black left-to-right arrows denote mutation during
the time from transmission to measurement in the donors and the recipients. The weights above the arrows denote the
probability of the transmission or mutation happening. The diagram can be read in the following way (example): at the
moment of a generation, a type 00 infected host transmits its pathogen to a susceptible individual of host-type 0 with
probability f.g. After the transmission event the strain in each of the two hosts has a chance v to be substituted by a
mutant strain. Thus, the probability of having a donor recipient couple, in which both hosts have a state 00 at the moment
of measurement, given that the donor was type 00 at the moment of transmission, is equal to the product v f.gv. It remains
to multiply this by the frequency of encountering a type 00 donor, to obtain the overall probability of the event.

22



SUPPLEMENTARY INFORMATION MBE

References

Yang, Z. 2006. Computational Molecular Evolution. OUP Oxford.

23



