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Abstract

Pathogen traits, such as the virulence of an infection, can vary significantly between patients. A major challenge is to
measure the extent to which genetic differences between infecting strains explain the observed variation of the trait. This
is quantified by the trait’s broad-sense heritability, H2. A recent discrepancy between estimates of the heritability of HIV-
virulence has opened a debate on the estimators’ accuracy. Here, we show that the discrepancy originates from model
limitations and important lifecycle differences between sexually reproducing organisms and transmittable pathogens. In
particular, current quantitative genetics methods, such as donor–recipient regression of surveyed serodiscordant couples
and the phylogenetic mixed model (PMM), are prone to underestimate H2, because they neglect or do not fit to the loss
of resemblance between transmission partners caused by within-host evolution. In a phylogenetic analysis of 8,483 HIV
patients from the United Kingdom, we show that the phenotypic correlation between transmission partners decays with
the amount of within-host evolution of the virus. We reproduce this pattern in toy-model simulations and show that a
phylogenetic Ornstein–Uhlenbeck model (POUMM) outperforms the PMM in capturing this correlation pattern and in
quantifying H2. In particular, we show that POUMM outperforms PMM even in simulations without selection—as it
captures the mentioned correlation pattern—which has not been appreciated until now. By cross-validating the POUMM
estimates with ANOVA on closest phylogenetic pairs, we obtain H2 � 0.2, meaning �20% of the variation in HIV-
virulence is explained by the virus genome both for European and African data.

Key words: HIV, set-point viral load (spVL), donor–recipient regression, ANOVA, phylogenetic mixed model,
Ornstein–Uhlenbeck.

Introduction

Pathogens transmitted between donor and recipient hosts
are genetically related much like children are related to their
parents through inherited genes. This analogy between trans-
mission and biological reproduction has inspired the use of
heritability (H2)—a term borrowed from quantitative genet-
ics (Falconer and Mackay 1996; Lynch and Walsh 1998; Hartl
and Clark 2007) to measure the contribution of pathogen
genetic factors to pathogen traits, such as virulence, transmis-
sibility, and drug-resistance of infections.

Two families of methods have been used to estimate the
heritability of a pathogen trait in the absence of knowledge
about its genetic basis:

• Resemblance estimators measuring the relative trait-
similarity within groups of transmission-related patients.
Common methods of that kind are linear regression of
donor–recipient (DR) couples (Fraser et al. 2014;
Leventhal and Bonhoeffer 2016) and analysis of variance
(ANOVA) of patients linked by (near-)identity of carried
strains (Anderson et al. 2010; Shirreff et al. 2013).

• Phylogenetic comparative methods measuring the so
called phylogenetic heritability, that is, the association

between observed trait values from patients and their
(approximate) transmission tree inferred from pathogen
sequences. Common examples of such methods are the
Felsenstein’s independent contrasts (Felsenstein 1985),
the phylogenetic mixed model (PMM) (Housworth
et al. 2004), and the Pagel’s k (Freckleton et al. 2002).

Most of these methods have been applied in studies of the
viral contribution to virulence in an HIV infection (Tang et al.
2004; Alizon et al. 2010; Hecht et al. 2010; Hollingsworth et al.
2010; van der Kuyl et al. 2010; Lingappa et al. 2013; Shirreff
et al. 2013; Yue et al. 2013; Fraser et al. 2014; Hodcroft et al.
2014; Bonhoeffer et al. 2015; Leventhal and Bonhoeffer 2016;
Bachmann et al. 2017; Bertels et al. 2018; Blanquart et al.
2017). To quantify the virulence of an HIV infection, the
above studies have used measurements of the log10 set point
viral load, lg(spVL)—the amount of virions per blood-volume
stabilizing in HIV patients at the beginning of the asymptom-
atic phase and best-predicting its duration (Mellors et al.
1996). In the view of discrepant reports of lg(spVL)-heritabil-
ity, many authors have questioned the accuracy of the exist-
ing methods and have proposed various adaptations of these
methods in order to overcome potential pitfalls, such as false
model assumptions (e.g., neutral evolution and ultrametricity
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of transmission trees) and imperfections in the data (e.g.,
small data size, presence of cofactors, and measurement er-
ror) (Shirreff et al. 2013; Fraser et al. 2014; Hodcroft et al. 2014;
Leventhal and Bonhoeffer 2016; Mitov and Stadler 2016;
Bachmann et al. 2017; Bertels et al. 2018; Blanquart et al.
2017). Despite these efforts, to date, there is no consensus
about the root cause of the discrepancy in lg(spVL)-her-
itability estimates and there is little reuse of the tools
previously implemented, making it hard to compare the
estimates from different studies.

In the remainder of the introduction, we consider the
definition of broad-sense heritability from the point of
view of the key differences between sexually reproducing
organisms and clonally transmitted pathogens. Then, in
New Approaches, we introduce a model of an epidemic
that allows exploring how one of these differences—the
within-host evolution of pathogens—affects most of the
currently used estimators of heritability. In Results, we
compare these estimators based on simulations of the
above model and report an analysis of spVL data from a
large HIV cohort. In the light of these results, we designate
the most reliable estimators of pathogen trait heritability
and establish a lower bound for the viral genetic contri-
bution to set-point viral load.

Differences between Pathogens and Sexual Species
When Estimating Heritability
According to quantitative genetics theory, the broad-sense
heritability, H2, of a quantitative trait is defined in the context
of a population of organisms as the ratio of the genotypic
over phenotypic variance:

H2 ¼ VarðGÞ=VarðzÞ; (1)

where z denotes the phenotypic value and G denotes the
genotypic value assigned to each individual in the popu-
lation (Falconer and Mackay 1996; Lynch and Walsh 1998;
Hartl and Clark 2007). In the case of epidemics, the pop-
ulation represents a sample of hosts, that is, organisms
infected by a given type of pathogen. The phenotypic
value, z, represents a numerical trait resulting from the
infection, and the genotypic value, G, is defined for each
pathogen genotype (strain), as the phenotypic value to be
expected if it would be measured in a randomly chosen
host infected with this strain.

In a large enough population with fully known pathogen
genotypes, H2 could be measured by the direct heritability
estimator—the coefficient of determination, R2

adj, obtained
over a grouping of the population by genotype. In practice
though, this is impossible, because population sizes are small
compared with large numbers of (usually unknown) geno-
types. To tackle this problem, pathogenecists have relied on
the apparent analogy between parent–offspring couples in
sexually reproducing populations and DR couples in infected
populations. This analogy has motivated the use of correla-
tion measures, such as the DR regression slope, b, and the
intraclass correlation in phylogenetic pairs, rA, to estimate the
heritability of pathogen traits (Anderson et al. 2010; Shirreff

et al. 2013; Fraser et al. 2014; Leventhal and Bonhoeffer 2016).
However, three differences between the lifecycles of clonally
transmitted pathogens and sexually reproducing organisms
challenge this approach:

Asexual Haploid Nature of Pathogen Transmission
The first difference is that, unlike the reproduction of diploid
organisms, the transmission of a pathogen from a donor to a
recipient is more similar to asexual (haploid) reproduction,
because, typically, whole pathogens get transferred between
hosts.

Partial Quasispecies Transmission
The second difference is that the transmitted proportion of
genetic information characterizing the pathogen in the donor
is unknown and varying between transmission events. For
example, for slowly evolving bacteria such as
Mycobacterium tubercolosis (Mtb), transmission can be clonal
(Bjorn-Mortensen et al. 2016), whereas, for rapidly evolving
retroviruses like HIV, transmission is often accompanied by
bottlenecks causing only a tiny sample of the large and ge-
netically diverse virus population in the donor (a.k.a., quasis-
pecies) to penetrate and survive in the recipient (Keele et al.
2008).

Within-Host Pathogen Evolution
The third difference involves the change in phenotypic value
due to within-host pathogen mutation and recombination.
Although genetic change is rare during the lifetime of animals
and plants and its phenotypic effects are typically delayed to
the offspring generations, it constitutes a hallmark in the
lifecycle of pathogens and causes a gradual or immediate
phenotypic change such as increasing virulence, immune es-
cape, or drug resistance (fig. 1).

The net outcome of these differences is that unlike family
members, for which the amount of genetic overlap is a known
constant, for example, 50% for a parent–child couple, the
genetic overlap between the two quasispecies in a DR couple
is an unknown variable. If there were full quasispecies trans-
mission and no within-host evolution, the pathogen popula-
tions found in a donor and a recipient at any moment after a
transmission event would be similar to identical twins raised
in separate environments. By analogy with twins, any measure
of the trait correlation in transmission couples, such as b and
rA, would estimate the broad-sense heritability, H2 (Lynch and
Walsh 1998). However, the partial quasispecies transmission
and the within-host evolution taking place in the time be-
tween transmission and measurement can lead to a change in
the correlation between couple members without affecting
H2 at the population level. We presume that this issue has
been at the origin of the discrepancy in previous reports of
lg(spVL)-heritability. In particular, the applied methods vary
substantially in how they account for the within-host evolu-
tion taking place between transmission and measurement:
some of them neglect it (Shirreff et al. 2013; Leventhal and
Bonhoeffer 2016); others diminish its effect through prefer-
ential sampling of patients in the early phase of infection
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or transmission couples shortly after seroconversion
(Hecht et al. 2010; Hollingsworth et al. 2010); third ones at-
tempt to account for it by taking advantage of stochastic
models of trait evolution, such as Brownian motion (BM)
(Alizon et al. 2010; Hodcroft et al. 2014) or Ornstein–
Uhlenbeck (OU) (Mitov and Stadler 2016; Bertels et al.
2018; Blanquart et al. 2017). In the next section, we introduce
a simulation based method allowing for within-host evolu-
tion, which enables comparing these methods against the
direct heritability estimator, R2

adj.

New Approaches

A Toy-Model of an Epidemic
We propose a simulation based method for evaluating differ-
ent heritability estimators. Our approach differs substantially
from previous simulation studies, where the pathogen geno-
type is equivalent to the genotypic value, G, and is modeled
by a continuous branching stochastic process evolving along
a given transmission tree (Alizon et al. 2010; Shirreff et al.
2013; Hodcroft et al. 2014; Leventhal and Bonhoeffer 2016).
In contrast, we implement a more explicit model in which the
pathogen genotype represents a randomly mutating se-
quence of gene variants (alleles) and the trait value results
from the interaction between the pathogen genotype and the
host. The main advantages of this approach are 1) the pos-
sibility to compare different estimates of H2 to its true value
obtained from the direct estimator, R2

adj, and 2) the possibility
to study the effect of within-host mutation and measurement
delay on all estimates. As a limitation, the proposed model
omits coexistence of strains within a host and partial quasis-
pecies transmission, because of their complexity and the cur-
rent lack of empirical knowledge and data (see Discussion).
For this reason and because of its minimalistic design, we refer
to this model as a “toy-model.”

In the toy-model, we think of an infection as an asexually
reproducing haploid organism. The environment for this or-
ganism is the infected host, and the reproduction represents
the clonal transmission of the infecting strain to other sus-
ceptible hosts. The pathogen has a genome composed of a
finite number of loci, which mutate sporadically during infec-
tion, resulting in mutant strains. Depending on the within-
host fitness of a mutant, it can be eliminated or it can imme-
diately substitute the strain currently invading the host. A
trait, z, is determined by the additive effects and epistatic
interactions between the alleles at the loci in the genome
as well as the interaction between these alleles and the
host immune system. The immune system represents a com-
bination of an immutable host type interacting in a prede-
fined way with each possible strain and a randomly drawn
host-specific effect, summarizing the unknown effects of
other host-related factors, such as age, sex, and habitat. We
assume two equally frequent host-types and two trait-
determining loci in the pathogen genotype with M1¼3 and
M2¼2 possible alleles at each locus. Thus, there are six pos-
sible strains and a total of 12 host type�strain combinations
(fig. 2A).

The dynamics of the model combine within-host events,
such as strain mutation and substitution, and between-host
events, such as transmission, natural, and pathogen-induced
death as well as diagnosis followed by immediate uninfec-
tiousness, recovery, and immunity for the patient. These
events are modeled as Poisson processes for every infected
individual (fig. 2B). The between-host dynamics are inspired
from a classical Susceptible-Infected-Recovered (SIR) model
with finite population size (ch. 1 in Keeling and Rohani 2007).
The main difference with this epidemiological model is that
the rate of transmission and the expected infectious period
for an infected host can depend on the current trait value and

FIG. 1. A schematic representation of an epidemic. Colored rectan-
gles represent infectious periods of hosts, different colors corre-
sponding to different host types. Triangles inside hosts represent
pathogen quasispecies, change of color indicating substitution of
dominant strains. Capital letters denote host-events: M: diagnosis
followed by immediate phenotype measurement, treatment and
quarantine for the host; D: host death. The transmission tree
connecting the measured hosts is drawn in black. Notice that,
due to incomplete sampling, there is no one-to-one correspond-
ance between transmission events and branching points on the
tree. By convention, the time origin is at the root of the tree and
the time is assumed to increase toward the the tips. We denote by
ti the time distance from the root to tip i. The mean root-tip
distance is denoted by�t. For each couple of tips, i and j, we denote
by tij the time distance from the root to their most recent common
ancestor (mrca) and by dij their phylogenetic distance. For clarity,
we show how dij can be expressed in terms of tij and the root-tip
times, ti and tj. Couples of tips that are each other’s closest tip by
phylogenetic distance, for example, (2, 3) and (4, 5), are called
“phylogenetic pairs” (PPs). In balanced trees, PPs tend to coincide
with pairs of tips descending from the same parent node (a.k.a.,
siblings or “cherries”).
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are subject to change with a substitution of the dominant
strain within the host (magenta curves on fig. 2D–F). For each
class of events (within- and between-host), we define two
modes:

• neutral: events occur at rates defined as global constants
mimicking neutrality (i.e., lack of selection) with respect
to z (black lines on fig. 2C–E). For within-host events, it is
assumed that a mutation of the pathogen is followed by
instantaneous substitution of the mutant for the current
dominant strain, regardless of the induced change in z
(black line on fig. 2C);

• select: within hosts, it is assumed that a mutation of the
pathogen is followed by instantaneous substitution only
if it results in a higher z (magenta line on fig. 2C).
Borrowing the approach from (Fraser et al. 2007), the
rates of transmission and within-host mutation are de-
fined as increasing Hill functions of 10z, whereas the in-
fectious time period is defined as a decreasing Hill
function of 10z, thus mimicking increasing per capita

transmission- and pathogen-induced mortality for higher
z (magenta lines on fig. 2D–F).

By combining different modes of dynamics at the within-
and between-host levels the model can reproduce some pop-
ular hypotheses of pathogen evolution. For example, the
combination of select within-host mode with select
between-host mode simulates selection for optimal transmis-
sion potential (Fraser et al. 2007; Stearns and Koella 2007).
This allows to evaluate the combined effect of selection and
within-host trait evolution on various estimators of
heritability.

Results
In this section, we use empirical data and simulations of the
toy-model to show that most of the heritability estimators
borrowed from classical quantitative genetics are prone to
significant bias, because they neglect or inaccurately model
the change in resemblance between transmission partners

FIG. 2. A toy model of an epidemic with within-host mutation and SIR dynamics. (A) A pathogen trait represents the sum of a general <host
type�strain> effect and a normally distributed host-specific effect. Pathogen strains are denoted by the alleles at the two loci, for example, “31”
stays for allele 3 at locus 1 and allele 1 at locus 2. The density of the trait in a population of hosts represents a mixture of normal densities
corresponding to the host type�strain combinations scaled by their relative frequencies. (B) Within a host (left), each locus of the infecting strain
mutates at a rate �; horizontal or curved arrows denote mutations at the first locus, vertical arrows denote mutations at the second locus; the rates
above the arrows correspond to the per locus mutation rate (�) divided by the number of possible other alleles at the locus. At the between-host
level (right), the alive population is divided into a Susceptible, Infected, and Recovered compartments, letters S, I and R denoting the corresponding
proportions in the population at a given time. New individuals become susceptible at a constant rate k; risky contacts occur at rate SIj, where j
denotes the individual contact rate; a risky contact can result in a new infection with probability c, �c denoting the mean of the transmission
probabilities of all infected hosts at a given time; a host is removed from the infected compartment in the events of death (occuring at rate d) or
diagnosis (occurring at rate q); diagnosis is followed by immediate treatment, recovery, and lifelong immunity for the patient; healthy hosts leave
the S and R compartments at a constant rate l. (C) An example time-course of the trait value within a host—the value changes instantaneously
with strain mutation; in the “neutral” case (black), the trait can change upward or downward; in the “select” case (magenta), only positive changes
are possible (mutants resulting in a lower trait value can not substitute the current strain). (D–F) The per locus mutation rate (�), the per risky
contact transmission probability (c) and the expected infectious time (1=ðdþ qÞ) are defined as constants in the “neutral” case (black) or as
functions of the trait value in the “select” case (magenta) (supplementary table S2, Supplementary Material online).
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caused by within-host evolution of the pathogen. Based on
the toy-model simulations, we designate the intraclass corre-
lation in the closest phylogenetic pairs (CPPs) and the phy-
logenetic heritability, H2

OUð�tÞ, measured by the phylogenetic
Ornstein–Uhlenbeck mixed model (POUMM) (Mitov and
Stadler 2016; Blanquart et al. 2017) as the most reliable esti-
mators of pathogen trait heritability. Based on applying these
estimators to a large HIV cohort, we establish a lower bound
for the lg(spVL)-heritability.

Through the rest of the article, we use the symbol dij to
denote the phylogenetic distance between two tips, i and j, on
a transmission tree (fig. 1). dij summarizes the total evolution-
ary distance between two infected hosts at the moment of
measuring the trait value and is measured in substitutions per
site for real trees and arbitrary time units for simulated trees.
We begin our report with a result from HIV data demonstrat-
ing the relevance of within-host evolution for estimating
heritability.

The lg(spVL) Correlation in HIV Phylogenetic Pairs
Decreases with dij

We used one-way analysis of variance (ANOVA, rA) and
Spearman correlation (rSp) to estimate the correlation in
phylogenetic pairs (PP) extracted from a recently pub-
lished transmission tree of 8,483 HIV patients (Hodcroft
et al. 2014). As defined in Shirreff et al. (2013), phylogenetic
pairs represent pairs of tips in the transmission tree that
are mutually nearest to each other by phylogenetic dis-
tance (dij) (fig. 1). We ordered the PPs by dij and split
them into ten strata of equal size (deciles), evaluating
the correlation between pair trait values (rA and rSp) in
each stratum. The point estimates and the 95% confidence
intervals (CI) are shown with black and magenta points
and error bars on figure 3. Dashed horizontal bars denote
the 95% CI for rA evaluated on all phylogenetic pairs.
Despite some irregularities, there is a well pronounced pat-
tern of decay in the correlation—strata to the left (small
dij) tend to have higher rA values than strata to the right
(big dij). The values of rA closely matched the values from
other correlation estimators, such as DR (b) and the
Pearson product mean correlation (r) (results not shown).
We performed ordinary least squares regressions (OLS) of
the values rA;Dk

and rSp;Dk
on the mean phylogenetic dis-

tance, �dij;k , in each stratum, k ¼ 1; . . .; 10. The slopes of
both regressions were significantly negative (P<0.05) and
are shown as black and magenta lines on figure 3. Similar
slopes were obtained when using other stratifications of
the data (supplementary fig. S1, Supplementary Material
online).

The above result shows that the value of a heritability
estimator based on the correlation within phylogenetic pairs
(including DR couples) depends strongly on dij. Another issue
of all estimators of H2 using the correlation in phylogenetic or
DR pairs is that the underlying statistical methods require
independence between the pairs—the trait values in one
pair should not influence or be correlated with the trait values
in any other pair. This assumption is not valid in general, due
to the phylogenetic relationship between all patients. One

way to mitigate the effects of phylogenetic relationship
between pairs is to limit the analysis to the closest pairs
(i.e., pairs, for which dij does not exceed some user specified
threshold). This approach has the drawback of omitting
much of the data from the analysis. As an alternative taking
advantage of the entire tree, it is possible to correct for the
phylogenetic relationship by using a phylogenetic compara-
tive method (PCM). PCMs attempt to solve both of the above
problems, because they 1) incorporate the branch lengths in
the transmission tree to model the variance–covariance
structure of the data and 2) correct for the phylogenetic
correlation when estimating evolutionary parameters or the
phylogenetic heritability of the trait (Felsenstein 1985;
Housworth et al. 2004; Alizon et al. 2010). These advantages
of the PCMs come at the price of assuming a specific sto-
chastic process as a model of the trait evolution along the
tree. In the next subsection, we show that assuming an inap-
propriate process for the trait evolution can cause a signifi-
cant bias in the estimate of phylogenetic heritability.

A Brownian Motion Process Cannot Reproduce the
Decay of Correlation in the UK Data
We implemented a maximum likelihood and a Bayesian fit of
the PMM (Lynch 1991; Housworth et al. 2004) and its exten-
sion to an Ornstein–Uhlenbeck model of evolution
(POUMM) (Hansen 1997; Mitov and Stadler 2016;
Blanquart et al. 2017). The PMM and the POUMM assume
an additive model of the trait values, zðtÞ ¼ gðtÞ þ e, in
which z(t) represents the trait value at time t for a given
lineage of the tree, g(t) represents a heritable (genotypic)
value at time t for this lineage and e represents a nonheritable
contribution summarizing the effects of the host and his/her
environment on the trait and the measurement error. The
only difference between the two models is their assumption
about the evolution of g(t) along the branches of the tree—
the PMM assumes a Brownian motion process; the POUMM
assumes an Ornstein–Uhlenbeck process (Uhlenbeck and
Ornstein 1930; Lande 1976; Hansen 1997).

Using the maximum likelihood estimates of the model
parameters (supplementary table S1, Supplementary
Material online), we simulated random trait trajectories on
the UK tree, running 100 replications for each model. For each
replication, we estimated the correlation, rA, in PPs using the
simulated values instead of the real values. The resulting cor-
relation estimates are shown on figure 3 as brown and green
points and error bars for the PMM and POUMM simulations,
respectively. We notice that there is a significant difference
between the correlation estimates of the two models. In par-
ticular, in the leftmost decile the POUMM estimate is signif-
icantly higher than the PMM estimate (the POUMM 95% CI
excludes the PMM estimate).

In order to understand the above difference between
PMM and POUMM, we derive approximate analytical expres-
sions of the correlation as a function of dij under the two
models. Assume for simplicity that two tips i and j are situated
at equal distance, t, from the root. According to Brownian
motion (BM), the correlation is a function of t and the
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distance tij from the root to the pair’s most recent common
ancestor (mrca):

rBM;ij ¼
CovBMðtij; r2Þ

VarBMðt; r2Þ þ r2
e

¼ r2 tij

r2 tþ r2
e

;

(2)

where r2 denotes the unit time variance of the BM process
and r2

e denotes the variance of the environmental (nonher-
itable) component, e (Housworth et al. 2004, Materials and
Methods). According to Ornstein–Uhlenbeck (OU), the cor-
relation is a function of t, tij, as well as the phylogenetic dis-
tance between the tips, dij:

rOU;ðijÞ ¼
CovOUðtij; dij; a; r2Þ

VarOUðt; a; r2Þ þ r2
e

¼
r2

2a
expð�adijÞ 1� expð�2atijÞ

� �
r2

2a
1� expð�2atÞð Þ þ r2

e

;

(3)

where the additional parameter a denotes the selection
strength of the OU process (Hansen 1997). By plugging-in
the ML estimates for the model parameters (supplementary
table S1, Supplementary Material online), substituting t with
the mean root-tip distance in the tree (�t ¼ 0:14), and ap-
proximating tij with its linear regression on dij in the UK tree
(t̂ij ¼ 0:15� 0:63dij), we obtain:

rBM;ij � 0:08� 0:36dij: (4)

rOU;ðijÞ � 0:21 expð�28:78dij Þ

�
 

1� exp �8:35þ 36:47dij

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�0

!

� 0:21 expð�28:78dijÞ:

(5)

The last approximation in equation (5) follows from the
fact that the term exp ð�8:35þ 36:47dijÞ is nearly 0 for the
range of phylogenetic distances (dij 2 ½0; 0:14�) in the UK
tree (see supplementary information, Supplementary
Material online, for further details on the above
approximations).

Equations (4) and (5) represent a linear and an exponential
model of the correlation as a function of dij. The values of
these equations at dij¼0 are equal to the phylogenetic herit-
abilities estimated at the mean root-tip distance �t under
PMM and POUMM (details on that later). The slope of the
linear model (eq. 4) equals�0.36 (95% HPD [�0.58,�0.21]).
The rate of the exponential decay (eq. 5) equals the POUMM
parameter a¼28.78 (95% HPD [16.64, 46.93]) and the half-life
of decay equals lnð2Þ=a ¼ 0:02 substitutions per site (95%
HPD [0.01, 0.04]).

Plotting the values of equations (4) and (5) and their 95%
HPD intervals on figure 3 reveals visually that the POUMM fits
better to the data than the PMM. Statistically, this is con-
firmed by a lower Akaike Information Criterion (AICc) for the
POUMM fit and a strictly positive HPD interval for the OU
parameter a (supplementary table S1 and fig. S8,
Supplementary Material online). The slope of the linear
model derived from the PMM fit (eq. 4, brown line on
fig. 3) is nearly flat compared with the slopes of the two
OLS fits (black and magenta lines on fig. 3). To explain this,

FIG. 3. Correlation between lg(spVL)-values in HIV phylogenetic pairs. A sample of 1917 PPs with lg(spVL)-measurements from HIV patients shows
a decrease in the correlation (ICC) between pair trait values as a function of the pair phylogenetic distance dij. The point estimates and 95% CIs in
ten strata of equal size (deciles) are depicted as points and error bars positioned at the mean dij for each stratum, �dij . Black and magenta points with
error-bars denote the estimated rA and rSp in the real data. Dashed horizontal bars denote the 95% CI for rA evaluated on all phylogenetic pairs. A
black and a magenta inclined line denote the least squares linear regression of rA and rSp on �dij . Brown and green points with error bars denote the
estimated values of rA obtained after replacing the real trait values on the tree by values simulated under the maximum likelihood fit of the PMM
and the POUMM methods, respectively (mean and 95% CI estimated from 100 replications). A brown and a green line show the expected
correlation between pairs of tips at distance dij, as modeled under the ML-fit of the PMM and the POUMM (eqs. 2 and 3). A light-brown and a light-
green region depict the 95% high posterior density (HPD) intervals inferred from Bayesian fit of the two models (Materials and Methods).
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we notice that in PMM, the covariance in phylogenetic pairs
and the variance at the population level are modeled as linear
functions of the root-mrca distance (tij) and the root-tip dis-
tance (t) (numerator and denominator in eq. 2). Importantly,
both of these linear functions are bound to the same slope
parameter, r2. As it turns out, in the UK data, the covariance
and the variance increase at different rates with respect to tij

and t (see supplementary fig. S2 and supplementary informa-
tion, Supplementary Material online). We conclude that the
PMM is not an appropriate model for the correlation in phy-
logenetic pairs, being unable to model the above difference in
the rates.

In the limit dij ! 0, a phylogenetic pair should be equiv-
alent to a DR couple at the moment of transmission, that is,
before the genotypes in the two hosts have diverged due to
within-host evolution. Thus, it appears reasonable to use an
estimate of the correlation at dij¼0 as a proxy for the broad-
sense heritability, H2, in the entire population. This idea has
been applied in previous studies of HIV (Hecht et al. 2010;
Hollingsworth et al. 2010; Bachmann et al. 2017; Blanquart
et al. 2017) as well as malaria (Anderson et al. 2010). One
potential obstacle to this approach is the possibility of intro-
ducing a sampling bias by filtering of the data. For example, if
the study is on a trait, which evolves toward higher values
during the course of infection, patients with lower trait values
would tend to be more frequent among the CPPs than in the
entire population. Thus, there is no guarantee that the trait
distribution and, therefore, the heritability measured in the
CPPs equals the heritability in the entire population. This
problem of sampling bias affects both, resemblance-based
as well as the currently used phylogenetic comparative meth-
ods. This suggests that the approach of imposing a threshold
on dij or estimating the correlation (rA, rSp or another corre-
lation measure) at dij¼0 needs further validation. In the next
subsection, we use simulations of the toy model to show that
sampling bias, although present, is comparatively small with
respect to the negative bias due to measurement delay.

ANOVA-CPP and POUMM Are the Least Biased
Heritability Estimators in Toy-Model Simulations
Here, we use simulations of the toy-model to compare a
number of heritability estimators against the known true
value of H2 (measured directly by the coefficient of determi-
nation R2

adj). We use the symbol T10k to denote the transmis-
sion tree of the first 10,000 diagnosed individuals in a
simulation. Below we list the different heritability estimators
grouping them by the type of their input:

• Grouping of the trait values by identical pathogen geno-
type. We evaluated the coefficient of determination ad-
justed for finite sample size, R2

adj, and the intraclass
correlation (ICC) estimated using one-way ANOVA,
rA½id�. The main difference between these two estimators
is the ANOVA assumption that the group-means (geno-
typic values) are sampled from a distribution of poten-
tially many more genotypes than the ones found in the
data. In contrast, R2

adj assumes that all genotypes in the
population are present in the sample. Since the latter

assumption is true for the simulated epidemics, R2
adj rep-

resents the reference (true) value of H2 to which all other
estimates are compared.

• Known DR couples. We evaluated the regression slope of
recipient on donor values in three ways: 1) b—based on
the trait values at the moment of diagnosing the infec-
tion; 2) b0—based on the trait values right after the trans-
mission events; and 3) bdij

0—based on the subsample of
diagnosed couples having dij not exceeding a threshold
dij
0. Based on a trade-off between precision and bias, we

specified dij
0 ¼ D1, D1 denoting the first decile in the

empirical distribution of dij (see supplementary informa-
tion, Supplementary Material online).

• Phylogenetic pairs (PPs) in T10k. We evaluated ICC using
ANOVA in three ways: 1) rA—based on all PPs; 2) rA;D1

—
based on CPPs defined as PPs in T10k having dij not ex-
ceeding the first decile, D1; and 3) rA;0;lin—the estimated
intercept from a linear regression of the values rA;Dk

on
the mean values dij;k in each decile, k ¼ 1; . . .; 10; For the
latter two estimators, which attempt to estimate rA at
dij¼0, we use the acronym ANOVA-CPP. As an alterna-
tive to ANOVA, which is more robust to outliers (e.g.,
extreme values at the tails of the trait distribution), we
evaluated the Spearman correlation in the first decile,
hereby denoted as rSp;D1

.
• Transmission tree T10k. We evaluated the phylogenetic

heritability based on the ML fit of the PMM and
POUMM models. Specifically, we compared the classical
formula evaluated at the mean root-tip distance �t in the
tree (eqs. 10 and 12) (Housworth et al. 2004; Leventhal
and Bonhoeffer 2016) and the empirical formula based
on the sample trait variance, s2(z) (eqs. 11 and 13) (de-
scribed in Materials and Methods). For the PMM, we
denote these estimators by H2

BMð�tÞ and H2
BMe; for the

POUMM, we use the symbols H2
OUð�tÞ and H2

OUe:

Table 1 summarizes the mathematical definition and the
assumptions of the above estimators. A more detailed de-
scription of the PMM and the POUMM methods is provided
in Materials and Methods. The referenced textbooks on
quantitative genetics (Lynch and Walsh 1998) are excellent
references for the other methods.

By combining “neutral” and “select” dynamics for the
strain mutation and substitution rates at the within-
host level, and the virus-induced per capita death rate
and per contact transmission probability at the
between-host level, we defined the following scenarios
of the toy-model:

• Within: neutral/Between: neutral;
• Within: select/Between: neutral;
• Within: neutral/Between: select;
• Within: select/Between: select;

For each of these scenarios and mean contact interval 1=
j 2 f2; 4; 6; 8; 10; 12g (arbitrary time units), we executed
ten simulations resulting in a total of 4� 6� 10¼ 240 sim-
ulations. Of the 240 simulations, 175 resulted in epidemic
outbreaks of at least 10,000 diagnosed hosts. For each
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outbreak, we analyzed the populations of the first up to
10,000 diagnosed hosts.

Rarer transmission events (bigger 1=j) result in longer
transmission trees and, therefore, longer average phylogenetic
distance between tips, dij (supplementary fig. S3,
Supplementary Material online). This enabled demonstrating
the effect of accumulating within-host evolution on the dif-
ferent heritability estimators (fig. 4).

Figure 4 shows that the estimators bD1
, b, rA;D1

, and rA are
negatively biased in general for all toy-model scenarios. This
bias tends to increase with the mean contact interval, 1=j
(respectively, dij), because random within-host mutation
tends to decrease the genetic overlap between DRs and phy-
logenetic pairs (supplementary fig. S4, Supplementary
Material online). The negative bias was far less pronounced
when imposing a threshold on dij but this came at the cost of
precision (less biased but longer box-whisker plots for bD1

and
rA;D1

compared with b and rA) (fig. 4). Several additional

sources of bias were revealed when considering the practically
unavailable estimators b0 and rA½id�. The estimator rA½id� was
positively biased due to the small number of simulated gen-
otypes (only six)—this was validated through additional sim-
ulations showing that rA½id� converges to the true value for a
slightly bigger number of genotypes (e.g., K�24 genotypes,
see supplementary information, Supplementary Material on-
line). The estimator b0 was behaving accurately in the neutral/
neutral scenario (excluding very short contact intervals) but
tended to have a bias in both directions in all scenarios in-
volving selection. The main reason for these biases was the
phenomenon of “sampling bias” consisting in a difference
between the distributions of measured values in the DR cou-
ples and the population of interest. Although its magnitude
was comparatevely small in the simulations, we presume that
sampling bias could play an important role in real biological
applications. We already gave an example of this bias in the
previous subsection. Another manifestation of sampling bias

Table 1. Tested Estimators of the Broad-Sense Heritability of Pathogen Traits.

Input Data Method (Abbreviation) Assumptions Estimator

Grouping by identical infecting
strain

Adjusted coefficient of
determination

The sample of data contains all
genotypes present in the
population

R2
adj ¼ 1� N�1

N�K
s2ðz�ĜÞ

s2ðzÞ (6)

One-way analysis of variance
(ANOVA)

Independently sampled genotypes rA½id� ¼ ðMSb�MSeÞ=n
ðMSb�MSeÞ=nþMSe

(7)
i.i.n.d. trait-values within each

group
Equal within-group variances

(homoscedasticity)
Known donor–recipient couples Donor–recipient regression

(DR)
Independently sampled donor–

recipient couples
Equal residual variance across the

range of donor-values
(homoscedasticity)

b ¼ sðzdon ;zrcpÞ
s2ðzdonÞ ;(8)

Equal donor and population
variances

variants: b, b0, bdij
0

Phylogenetic pairs (PPs) ANOVA on all/closest PPs
(ANOVA-PP, ANOVA-
CPP)

ANOVA assumptions (see above) Defined as in equation (7), but
calculated on PPs

variants: rA, rA;dij
0

Spearman correlation on
all/closest PPs

PPs are independent from one
another

Pearson (product mean) correla-
tion, calculated on the ranks of
the trait-values.

variants: rSp, rSp;dij
0

Linear regression of rA on dij

upon a stratification
rAdepends linearly on dij The intercept, rA;0;lin, from the OLS

fit of the model
Equal residual variance across the

range of dij

rAðdijÞ ¼ rA;0;lin þ x1dij: (9)

Transmission tree Phylogenetic mixed model
(PMM)

Branching BM evolution H2
BMð�tÞ ¼ �tr2=ð�tr2 þ r2

e Þ (10)

i.i.n.d. distributed environmental
deviation, e � Nð0; r2

e Þ
H2

BMe ¼ 1� r2
e=s2ðzÞ(11)

Phylogenetic Ornstein–
Uhlenbeck mixed model
(POUMM)

Branching OU evolution H2
OUð�tÞ ¼

r2 1� expð�2a�tÞð Þ
r2 1� expð�2a�tÞð Þþ2ar2

e
(12)

i.i.n.d. environmental deviation,
e � Nð0; r2

e Þ
H2

OUe ¼ 1� r2
e=s2ðzÞ(13)

NOTE.—Notation: s2ð�Þ, sample variance; sð�; �Þ, sample covariance; N, number of patients; K, number of distinct groups of patients, that is, genotypes or phylogenetic pairs;

z, measured values; Ĝ, estimated genotypic values: mean values from patients carrying a given genotype; zdon, donor values; zrcp, recipient values; MSe , within-group mean square:

MSe ¼
P
ðzi��ziÞ2

N�K , where zi is an individual’s value and�zi is the mean value of the group to which the individual belongs; MSb , among-group mean square: MSb ¼
P
ð�zi��zÞ2

K�1 , where

�zi is defined as above and �z is the population mean value; n, weighted mean number patients in a group, that is, n¼2 for phylogenetic pairs and n ¼ N�
P

n2
i

N

� �
=ðK � 1Þ for

groups of variable size; a, r, re: PMM/POUMM parameters (described in Materials and Methods).
i.i.n.d., independent and identically normally distributed; dij, phylogenetic distance between donor–recipient pairs or phylogenetic pairs; dij

0 , threshold on dij (see text).
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is the fact that b0 does not fully eliminate the effect of
within host-evolution (and selection) in the donors. This
is why, in cases of selection, the phenotypic variance in
the donors tends to be smaller than the variance in the
recipients as well as the variance in the population (sup-
plementary fig. S5, Supplementary Material online).
Additional details on these potential sources of bias are
provided in supplementary information, Supplementary
Material online.

Further, the simulations showed that a worsening fit of the
BM model on longer transmission trees was causing an in-
flated estimate of the environmental deviation, re, in the

PMM fits and, therefore, a negative bias in H2
BMð�tÞ and

H2
BMe (compare estimates for small and big values of 1=j

on fig. 4 and supplementary fig. S6C, Supplementary
Material online). In contrast with the PMM, the POUMM
estimates, H2

OUð�tÞ and H2
OUe were far more accurate and

the value of re in the POUMM ML fit was nearly matching
the true nonheritable deviation in most simulations (fig. 4 and
supplementary fig. S6C, Supplementary Material online). The
better ML fit of the POUMM was confirmed by stronger
statistical support, namely by lower AICc values in all toy-
model simulations (supplementary fig. S6D, Supplementary
Material online).

FIG. 4. Heritability estimates in toy-model simulations. (A–D) H2-estimates in simulations of “neutral” and “select” within-/between-host dy-
namics. Each group of box-whiskers summarizes the simulations for a fixed scenario and contact interval, 1=j; white boxes (background) denote
true heritability, colored boxes denote estimates (foreground). Statistical significance is evaluated through t-tests summarized in table 2.
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The fact that the POUMM outperformed the PMM in all
scenarios contradicted with the initial belief that the PMM
should be the better suited model for a neutrally evolving trait
represented by the neutral/neutral scenario, whereas the
POUMM should fit better to scenarios involving selection.
It was also counterintuitive that the inferred parameter a
from the POUMM model was significantly positive in all
simulations including the neutral/neutral scenario (supple-
mentary fig. S6B, Supplementary Material online). To better
understand this phenomenon, we performed the PP stratifi-
cation analysis on the toy-model data (supplementary fig. S7,
Supplementary Material online). This revealed a pattern of
correlation that decays exponentially with dij. The shape of
exponential decay was mostly pronounced for longer contact
intervals, 1=j, particularly in the neutral/neutral scenario
(first column on supplementary fig. S7, Supplementary
Material online). In supplementary information,
Supplementary Material online, we show that an exponen-
tially decaying phenotypic correlation is consistent with a
neutrally mutating genotype under a Jukes–Cantor substitu-
tion model (Yang 2006). The decay of the correlation was still
present in scenarios involving within- and/or between-host
selection but the observed pattern was rather irregular and
deviating from an exponential function of dij (supplementary
fig. S7, Supplementary Material online). In most cases, the ML
fit of the PMM method was a bad fit to the decay of corre-
lation (brown dots and error-bars on supplementary fig. S7,
Supplementary Material online); for longer contact intervals,
there was a tendency toward constant values of the correla-
tion under PMM far below the true value (brown dots and
error bars on supplementary fig. S7, Supplementary Material
online). This explains the overall better accuracy of the
POUMM versus the PMM method.

Table 2 shows the average bias of each tested estimator for
each of the four scenarios. We conclude that, apart from the
practically inaccessible estimators based on grouping by iden-
tical genotype (R2

adj and rA½id�), the most accurate estimators
of H2 in the toy-model simulations are H2

OUð�tÞ and H2
OUe

followed by estimators of the correlation in PPs minimizing
the phylogenetic distance dij, that is (rA;D1

, rA;0;lin, rSp;D1
). In

the next subsection, we report the results from these estima-
tors in the UK HIV data.

Heratibality of lg(spVL) in the UK HIV Cohort
We evaluated the correlation in the CPPs (ANOVA and
Spearman correlation) in data from the UK HIV cohort com-
prising lg(spVL) measurements and a tree of viral (pol) sequen-
ces from 8,483 patients inferred previously in (Hodcroft et al.
2014). In addition, we performed a Bayesian fit of the POUMM
and the PMM methods to the same data. The goal was to test
our conclusions on a real data set and to compare the H2-
estimates from CPPs and POUMM to previous PMM/ReML-
estimates on exactly the same data (Hodcroft et al. 2014).

In applying ANOVA-CPP, the first step has been to define
the threshold phylogenetic distance for defining CPPs. To that
end, we explored different stratifications of the PPs as shown
on supplementary figure S1B, Supplementary Material online,
and a scatter plot of the phylogenetic distances against the

absolute phenotypic differences, jD lgðspVLÞj (fig. 5A). This
revealed a small set of 116 PPs having dij 	 10�4 and nar-
rowly coinciding with the first vigintile (also called 20-quantile
or ventile) of dij. The phylogenetic distance in all remaining
tip-pairs was more than an order of magnitude bigger, that is,
dij > 10�3. Given that the phylogenetic distance on the
transmission tree is measured in substitutions per site and
the length of the pol-region is in the order of 103 sites, we
presume that the above set of 116 PPs corresponds to a set of
116 pairs of identical pol consensus sequences (no sequence
data were available to check this). Based on this observation,
we defined the above pairs as CPPs and the threshold was
formally set to dij

0 ¼ 10�4. We validated that the CPPs were
randomly distributed along the tree (fig. 5B). The random
distribution of the CPPs along the transmission tree suggests
that these phylogenetic pairs correspond to randomly occur-
ring early detections of infection (trait values from each pair
depicted as magenta segments on fig. 5B). To check that the
filtering of the data, did not introduce a considerable sam-
pling bias due to selection (see previous subsection), we also
validated that there was no substantial difference in the trait
distributions of all patients, the PPs and the CPPs (fig. 5C).

We compared the following estimators of H2:

• ANOVA-CPPs (rA;D1
, rA;10�4 , rA;V1

) and the original PP-
method rA;

• The intercept from the linear regression of rA on dij upon
a stratification of the PPs into deciles (rA;0;lin, eq. 9);

• Spearman correlatoin in CPPs (rSp;D1
, rSp;10�4 , rSp;V1

) and
in all PPs (rSp).

• The intercept from the linear regression of rSp on dij upon
a stratification of the PPs into deciles (rSp;0;lin);

• POUMM (H2
OUð�tÞ, H2

OUe), versus PMM (H2
BMð�tÞ, H2

BMe) on
the entire tree;

The results from these analyses are reported in table 3.
ANOVA- and Spearman-correlation estimates, which

Table 2. Mean Difference bH2 � R2
adj from the Toy-Model Simulations

Grouped by Scenario.

Within: Neutral Neutral Select Select
Between: Neutral Select Neutral Select

N 50 41 47 37
b0 �0.01* �0.02** 0.05** 0.04**
bD1

�0.07** �0.04** 0 �0.01
b �0.25** �0.2** �0.07** �0.06**
rA½id� 0.05** 0.05** 0.08** 0.06**

^rA;0;lin �0.05** �0.06** 0.01 �0.04**
rA;D1

�0.05** �0.06** 0 �0.03*
rA �0.18** �0.15** �0.06** �0.08**

rSp;D1
�0.05** �0.05** �0.05** �0.07**

H2
BMð�tÞ �0.17** �0.17** �0.01 �0.04*

H2
BMe �0.28** �0.24** �0.12** �0.16**

H2
OUð�tÞ �0.01 �0.02** 0.01* 0.03**

H2
OUe �0.01 �0.02** 0.01* 0.03**

NOTE.—Statistical significance is estimated by Student’s t-tests, P values denoted by
an asterisk as follows: * P<0.01; **P<0.001. Gray background indicates estimates
that are unavailable in practice.
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minimized the phylogenetic distance by means of regression
or filtering of the phylogenetic pairs had point-estimates of
rA;10�4 ¼ 0:17 and rSp;10�4 ¼ 0:22. The slightly higher esti-
mate for the Spearman correlation could be explained by
the presence of outliers in the data. Applying the POUMM
to the entire tree reported a point estimate H2

OUð�tÞ ¼ 0:21
(8,483 patients, 95% CI [0.14, 0.29]).

Conversely, the heritability estimates from the original PP
method (ANOVA or Spearman correlatoin on all PPs) and
the PMM were significantly lower and falling below the 95%
CIs from the POUMM (table 3). This confirms the observa-
tion from the toy-model simulations that these estimators are
negatively biased, since they ignore or inaccurately model the
changing correlation within pairs of tips. We validated the
stronger statistical support for the POUMM with respect to
the PMM, by its lower AICc value (supplementary table S1,
Supplementary Material online) and by the posterior density
for the POUMM parameter a (supplementary fig. S8,
Supplementary Material online).

Finally, we compared our estimates of lg(spVL)-heritability
to previous applications of the same methods on different
data sets (fig. 6). In agreement with the toy-model simula-
tions, estimates of H2 using PMM or other BM-based phylo-
genetic methods (i.e., Blomberg’s K and Pagel’s k) are notably
lower than all other estimates, suggesting that these phylo-
genetic comparative methods underestimate H2;
resemblance-based estimates are down-biased by

measurement delays (e.g., compare early vs. late in the
Netherlands on fig. 6).

In summary, POUMM and ANOVA-CPP yield agreeing
estimates for H2 in the UK data and these estimates agree
with resemblance-based estimates in data sets with short
measurement delay (different African countries and the
Netherlands). Similar to the toy-model simulations, we notice
a well-pronounced pattern of negative bias for the other
estimators, PMM and ANOVA-PP, as well as for the previous
resemblance-based studies on data with long measurement
delay.

Discussion

Clarifying the Terminology and Notation
In this study, we explored how the differences between
pathogens and mating species affect the various tools
employed in estimating the heritability of pathogen traits.
For mating species, the resemblance between relatives has
been directly associated with the genetic determination of
quantitative traits. The most prominent example is the
parent–offspring regression slope used to estimate the
narrow-sense heritability, h2. For pathogens, one needs to
disentangle the concepts of resemblance and genetic deter-
mination. First of all, the only reason to associate the parent–
offspring regression slope with narrow-sense heritability is the
presence of genetic segregation and recombination during
sexual reproduction, favoring the inheritance of single-locus
additive effects over multilocus epistatic effects (Lynch and
Walsh 1998). Given that clonal pathogen transmission
excludes segregation and recombination, the above associa-
tion is invalid for pathogen traits. The correlation between
transmission partners should rather be associated with the
broad-sense heritability, H2. This association, though, is
compromized by a number of sources of bias, such as partial
quasispecies transmission, within-host evolution, and many
potential cofactors, such as shared habitats between donors
and recipients, sampling bias, and convergent within-host
evolution. All methods reviewed in this article can be
regarded as methods that estimate the correlation between
patients infected with identical pathogen strains. This is true
also for the phylogenetic approaches, since, technically, the
phylogenetic heritability is the expected correlation between
pairs of tips in the limit dij ! 0 (see also Materials and
Methods). Thus, all estimators can only be regarded as sta-
tistics summarizing the resemblance that is still observable in
the presence of the above factors.

A Disagreement between Simulation Studies
Using simulations of the toy epidemiological model, we have
shown that two methods based on phenotypic and sequence
data from patients—estimating the correlation in CPPs and
fitting the POUMM to the data—provide more accurate her-
itability estimates compared with previous approaches like
DR and PMM. However, we should not neglect the arising
discrepancy between our and previous simulation reports
advocating either PMM (Hodcroft et al. 2014) or DR
(Leventhal and Bonhoeffer 2016) as unbiased heritability

FIG. 5. Phylogenetic pairs in lg(spVL) data from the United Kingdom.
(A) A scatter plot of the phylogenetic distances between pairs of tips
against their absolute phenotypic differences: gray, PPs (dij > 10�4);
magenta, CPPs (dij < 10�4). A black line shows the linear regression
of jD lgðspVLÞj on dij (the slope of the regression was statistically
positive at the 0.01 level). (B) A box-plot representing the trait-dis-
tribution along the transmission tree. Each box-whisker represents
the lg(spVL)-distribution of patients grouped by their distance from
the root of the tree measured in substitutions per site. Wider boxes
indicate groups bigger in size. Segments in magenta denote lg(spVL)-
values in CPPs. (C) A box-plot of the lg(spVL)-distribution in all
patients (black), PPs (gray), and CPPs (magenta).
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estimators. Both of these studies have modeled within-host
evolution, but failed to demonstrate the biases shown in this
article. This could be explained by simulation artifacts.
Hodcroft et al. (2014) perform simulations under a PMM
model, so it is unlikely to reveal any bias in the PMM estima-
tor; Leventhal and Bonhoeffer (2016) evaluated DR in con-
secutive Wright–Fisher generations using the donor values at
the moment of transmission, thus, excluding potential mea-
surement delay in the donors and accounting for a minute
measurement delay in the recipients (one generation on the
scale of hundreds of simulated generations). Compared with
these simulations, the toy-model presented here has several
important advantages: 1) it is biologically motivated by phe-
nomena such as pathogen sequence mutation during infec-
tion, transmission of entire pathogens instead of proportions
of trait values, and within-/between-host selection; 2) it allows
to compare various resemblance-based and phylogenetic her-
itability estimates against the direct estimator, R2

adj; 3) it is a
fair test for all estimators of heritability, because it does not
obey any of the estimators’ assumptions, such as linearity of
recipient—on donor values, normality of trait values, OU or
BM evolution, independence between pathogen and host
effects; and 4) it generates transmission trees that reflect
the between-host dynamics, for example, clades with higher
trait values exhibit denser branching in cases of between-host
selection. As a criticism, we note that the toy-model does not
allow strain coexistence within a host and, thus, is not able to
model partial quasispecies transmission and, in particular,
transmission bottlenecks (Keele et al. 2008) or preferential
transmission of founder strains (Lythgoe and Fraser 2012).
Although it may be exciting from a biological point of view,
the inclusion of strain coexistence comes with a series of
conceptual challenges, such as the definition of genotype
and clonal identity or the formulation of the trait value as a
function of a quasispecies—instead of a single strain gen-
otype. These challenges should be addressed in future studies

implementing more advanced models of within-host dynam-
ics and leveraging deep sequencing data. To conclude, the
discrepancy between simulation studies highlights that no
inference method suits all simulation setups ergo biological
contexts. Thus, rather than proving universality of a particular
method, simulations should be used primarily to study how
particular biologically relevant features affect the methods on
the table.

The Heritability of HIV Set-Point Viral Load Is at Least
20%
Applied to data from the United Kingdom, POUMM
reported three times higher point estimates and nonoverlap-
ping HPDs compared with a previous PMM/ReML-based es-
timate on the same data (0.06, 95% CI [0.02, 0.09]) (Hodcroft
et al. 2014). Our PMM implementation confirmed this esti-
mate. However, based on figure 3 and our simulations (fig. 4),
the PMM estimates are underestimates of the true heritabil-
ity. The estimate of 20% should still be considered a lower
bound since it does not account for additional sources of
potential negative bias, such as partial quasispecies transmis-
sion and measurement error. This result matches estimates
from GWAS studies on the pathogen revealing that genetic
polymorphisms in the virus explain�20% from spVL variance
in other cohorts (reviewed in Bonhoeffer et al. 2015). Overall,
our analyses yield an unprecedented agreement between
estimates of DR resemblance and phylogenetic heritability
in large European data sets and African cohorts, provided
that measurements with large delays have been filtered out
prior to resemblance evaluation (Hecht et al. 2010;
Hollingsworth et al. 2010) (fig. 6A). Also noteworthy are the
facts that our estimates for the UK data set support the
results from Fraser et al. (2014) who conducted a meta-
analysis of three data sets on known transmission partners
(Hollingsworth et al. 2010; Lingappa et al. 2013; Yue et al.
2013) (433 pairs in total) reporting heritability values of

Table 3. Estimates of lg(spVL)-Heritability in HIV Data from the United Kingdom.

Method N Ĥ
2

95% CI 95% HPD

Linear regression of rA on �dij in deciles (eq. 9) (rA;0;lin) 10 points 0.17 [0.09, 0.24] –

Linear regression of rSp on �dij in deciles (rSp;0;lin) 10 points 0.18 [0.11, 0.25] –
ANOVA-CPP (rA;V1

) 224 0.17 [�0.02, 0.31] –
ANOVA-CPP (rA;10�4 ) 232 0.16 [0.01, 0.30] –
ANOVA-CPP (rA;D1

) 384 0.16 [0.06, 0.25] –

ANOVA-PP (rA)a 3,834 0.11 [0.08, 0.14] –
Spearman-CPP (rSp;V1

) 224 0.23 [0.05, 0.42] –
Spearman-CPP (rSp;10�4 ) 232 0.22 [0.03, 0.4] –
Spearman-CPP (rSp;D1

) 384 0.2 [0.06, 0.34] –

Spearman-PP (rSp)a 3,834 0.11 [0.06, 0.15] –

POUMM (H2
OUð�tÞ) 8,483 0.21 – [0.14, 0.29]

POUMM (H2
OUe) 8,483 0.2 – [0.13, 0.29]

PMM (H2
BMð�tÞ)

b 8,483 0.08 – [0.05, 0.12]

PMM (H2
BMe)b 8,483 0.06 – [0.02, 0.1]

PMM, ReML (Hodcroft et al. 2014)b 8,483 0.06 [0.03, 0.09] –

NOTE.—Also written are the results from a previous analysis on the same data set (Hodcroft et al. 2014). “–”: the analysis was not done in the mentioned study. Gray background:
estimates considered unreliable due to: anegative bias caused by measurement delays and bnegative bias caused by BM violation. Uncertainty in the estimates is expressed in
terms of 95% confidence intervals (CI), or, in the case of Bayesian inference, by 95% high posterior density intervals (HPDs).
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0.33, CI [0.20, 0.46], as well as the recent results from
Blanquart et al. (2017) who conducted a POUMM and a
PMM analysis on a whole-genome meta-data set (1,581
sequences from several European countries) reporting spVL
heritability of 0.31, CI [0.15, 0.43]. In analogy with our ANOVA
approach, Blanquart et al. (2017) measured the Pearson cor-
relation in “cherries” partitioned by phylogenetic distance,
showing a similar pattern of decreasing correlation with dij.
Contrary to the UK data though, Blanquart et al. (2017) have
shown nearly equal statistical support for PMM (a¼0,
AIC¼ 3,343.2) and POUMM (a¼7.6, 95% bootstrap CI [1.2,
10.0], AIC¼ 3,344.5) for 1,581 subtype B pol sequences and
spVL measurements (table 1 in Blanquart et al. 2017). This
equal support fot the PMM and the POUMM models might
indicate that none of the two models is a good fit to the data
(i.e., flat likelihood surface), or that the likelihood surface for
the POUMM is bimodal with modes at a¼0 and at a¼7.6. A

Bayesian POUMM fit with uninformative prior could be used
to reveal such anomailies (see Materials and Methods and
supplementary fig. S8, Supplementary Material online).

To sum up, all data sets support the hypothesis of HIV
influencing spVL (H2>0.2). The particular estimates provided
here should be interpreted as lower bounds for H2, because
the partial quasispecies transmission, the noises in spVL meas-
urements and the noise in transmission trees are included
implicitly as environmental (nontransmittable) effects. The
nonzero heritability motivates further HIV whole-genome se-
quencing (Metzner 2016) and genome-wide studies of the
viral genetic association with viral load and virulence.

A Critical View on the POUMM
The OU process has found previous applications as a model
for stabilizing selection in macroevolutionary studies (Lande
1976; Felsenstein 1988; Hansen 1997; Hansen and Bartoszek
2012) and references therein. As a contribution of this work,
we have shown that the OU process is well adapted for the
modeling of pathogen evolution along transmission trees in
both, neutral as well as selection scenarios. The key advantage
of the OU process to the BM process is the way in which the
phylogenetic distance between a pair of tips enters in the
expression for their correlation (eq. 3). This is a crucial advan-
tage in modeling the loss of resemblance caused by within-
host evolution of the pathogen (fig. 3 and supplementary fig.
S7, Supplementary Material online). But there is a caveat
coming along with this property of the OU-model—both,
the rate at which a trait evolving under OU adapts toward
h and the rate of correlation decay for a pair of tips are
governed by the same parameter: a. This is why a significantly
positive estimate for a does not necessarily imply stabilizing
selection. This was clearly shown in the neutral/neutral sce-
nario of the toy-model simulations (supplementary fig. S6B,
Supplementary Material online). A further extension of the
POUMM using two separate parameters for the rate of at-
traction toward h and for the rate of decorrelation would
allow to disentangle the two forces.

Most of the above-mentioned studies and the accompa-
nying software packages implementing phylogenetic OU
models have assumed that the whole trait evolves according
to an OU process, usually disregarding the presence of a bi-
ologically relevant nonheritable component e or treating it as
a measurement error whose variance is a priori known
(FitzJohn 2012). Having the OU process act on the genotypic
values rather than whole trait values is a simplifying assump-
tion facilitating mathematical processing (Mitov and Stadler
2016). However, our toy model simulations have shown ro-
bustness and statistical power of the POUMM in complicated
scenarios combining trait-based selection at the within- and
between-host levels.

A last criticism that can be addressed to the POUMM
method is that it is unaware of between-host selection and
demographic processes, which may result in a correlation
between tree structure and trait values (e.g., higher branching
density in clades with higher z). As noted by Leventhal and
Bonhoeffer (2016), this is a general issue with phylogenetic
comparative approaches assuming a global evolutionary

FIG. 6. A comparison between H2H2-estimates from the UK HIV-co-
hort and previous estimates on African, Swiss, and Dutch data. (A)
Estimates with minimized measurement delay (dark cadet-blue) and
POUMM estimates (green); (B) Down-biased estimates due to higher
measurement delays (light-blue) or violated BM-assumption
(brown). Confidence is depicted either as segments indicating esti-
mated 95% CI or P values in cases of missing 95% CIs. References to the
corresponding publications are written as numbers in superscript as
follows: 1: Tang et al. (2004); 2: Hecht et al. (2010); 3: Hollingsworth
et al. (2010); 4: van der Kuyl et al. (2010); 5: Lingappa et al. (2013); 6:
Yue et al. (2013); 7: Alizon et al. (2010); 8: Shirreff et al. (2013); 9:
Hodcroft et al. (2014); 10: Blanquart et al. (2017); 11: Bertels et al.
(2018); 12: this work. For clarity, estimates from previous studies,
which are not directly comparable (e.g., previous results from Swiss
MSM/strict data sets; Alizon et al. 2010).

Mitov and Stadler . doi:10.1093/molbev/msx328 MBE

768

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/35/3/756/4796877 by ETH
 Zürich user on 16 Septem

ber 2019

Deleted Text:  
Deleted Text: <IMG_FOUND/>
Deleted Text: <IMG_FOUND/>
Deleted Text:  
Deleted Text: <IMG_FOUND/>
Deleted Text:  
Deleted Text:  
Deleted Text: )
Deleted Text: -
Deleted Text: <IMG_FOUND/>
Deleted Text: <IMG_FOUND/>
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx328#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx328#supplementary-data
Deleted Text: <IMG_FOUND/>
Deleted Text: <IMG_FOUND/>
Deleted Text: -
Deleted Text: -
Deleted Text: c
Deleted Text: v
Deleted Text: -
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx328#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx328#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx328#supplementary-data
Deleted Text:  - 
Deleted Text: s
Deleted Text: <IMG_FOUND/>
Deleted Text: <IMG_FOUND/>
Deleted Text: <IMG_FOUND/>
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx328#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msx328#supplementary-data
Deleted Text: s
Deleted Text: <IMG_FOUND/>
Deleted Text: -
Deleted Text: <IMG_FOUND/>
Deleted Text: for example 
Deleted Text: <IMG_FOUND/>


process acting on the whole phylogeny. An unexplored alter-
native would be to associate different instances of POUMM
to different clades in the tree based on prior knowledge about
heterogeneity between these clades.

Outlook
ANOVA-CPP and POUMM have great potential to become
widely used tools in the study of pathogens. The accompa-
nying R-package patherit provides a common interface for
using the two methods on a transmission tree and phenotype
data (Materials and Methods). ANOVA-CPP works on pairs
of trait values from carriers of nearly identical strains and can
be easily extended to groups of variable size (Lynch and Walsh
1998; Anderson et al. 2010). Thus, ANOVA-CPP is ideal for
slowly evolving pathogens such as DNA-viruses, bacteria, and
protozoa, where clusters of patients carrying identical-by-
descent (IBD) strains are frequently found. For example,
Anderson et al. (2010) identified 27 clusters of two to eight
carriers of IBD strains in a small set of 185 malaria patients,
that is, 41% of the patients participated in clusters. On the
other hand, IBD-pairs are rare for rapidly evolving RNA-
viruses, such as HIV and HCV. For instance, we identified
only 116 CPPs in a large data set of 8,483 HIV-sequences, that
is, <3% of the patients involved in IBD-pairs. However, the
rapidly accumulating sequence diversity of RNA-viruses
allows building large-scale phylogenies, which approximate
transmission trees between patients. Thus, RNA-viruses
should make the ideal scope for the POUMM. If the trans-
mission tree is large enough, it is be possible to compare the
estimates from the two methods and to analyze the profile of
the correlation in phylogenetic pairs, as we did in the UK HIV
data (fig. 3 and supplementary fig. S2, Supplementary Material
online). We believe that, together, the two methods enable
accurate and robust heritability estimation in a broad range of
pathogens.

Materials and Methods
The subsections below provide details on the different heri-
tability estimators (based on the categorization by input type,
table 1) and the toy-model simulations.

Grouping by Identical Infecting Strain
Adjusted Coefficient of Determination
We calculated R2

adj based on equation (6) (table 1).

One-Way Analysis of Variance
We calculated rA based on equation (7) (table 1). A more
detailed description of one-way ANOVA can be found in
chapter 18 of Lynch and Walsh (1998).

Donor–Recipient Couples
To calculate the DR regression slope (b, b0, bD1

), we used
equation (8) (table 1).

Phylogenetic Pairs
To calculate ICC in phylogenetic pairs (rA, rA;D1

, rA;V1
, rA;10�4 ),

we used one-way ANOVA (eq. 7, chapter 18 of Lynch and
Walsh 1998). To calculate confidence intervals for the HIV

data, we used the R-package “boot” to perform 1,000-repli-
cate bootstraps, upon which we called the package function
boot.ci() with type¼“basic.” These confidence intervals were
fully contained in the standard ANOVA confidence intervals,
based on the F-distribution (Lynch and Walsh 1998), which
were slightly wider (not reported).

Phylogenetic Methods
Phylogenetic Mixed Model
The PMM assumes an additive model zðtÞ ¼ gðtÞ þ e, in
which z(t) represents the trait value at time t for a given
lineage of the tree, g(t) represents a heritable (genotypic)
value at time t for this lineage and e represents the environ-
mental (nonheritable) contribution. The genotypic value, g(t),
is assumed to evolve according to a branching Brownian
motion process defined by the stochastic differential
equation:

dgðtÞ ¼ rdWt;

gð0Þ ¼ g0

(14)

where g0 is the initial genotypic value at the root, Wt is the
standard Wiener process, and r>0 is the unit-time SD
(Grimmett and Stirzaker 2001).

The environmental contribution e can change along the
tree in any way as long as the values e at the tips are inde-
pendent and identically normally distributed (i.i.n.d.) with
mean 0 and variance r2

e . In the case of modeling an epidemic,
e represents the total contribution from the host immune
system, other host factors (e.g., age, sex), the host environ-
ment and measurement error; it obtains a value at the be-
ginning of an infection, which can stay constant or change
during the course of an infection, but is uncorrelated to the
immune system and cofactors of other hosts.

Phylogenetic Ornstein–Uhlenbeck Mixed Model
The POUMM is an extension of the PMM replacing the BM
assumption with an assumption of an Ornstein–Uhlenbeck
(OU) process for the genotype evolution. The OU-process
represents a continuous time random walk, which tends to
move around a long-term mean value with greater attraction
when the process is further away from that value (Uhlenbeck
and Ornstein 1930; Hansen 1997). Technically, this is accom-
plished by adding an attraction term to equation (14):

dgðtÞ ¼ a½h� gðtÞ�dt|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Attraction to h

þ rdWt|ffl{zffl}
Brownian motion

; (15)

where h denotes the long-term mean and a>0 is the attrac-
tion strength. Since in the limit a! 0 the attraction term
vanishes and only the BM term remains, the OU-process
represents a generalization of BM. As in the PMM, an inde-
pendent white noise term e � Nð0; r2

eÞ is added to g(t) at
the tips.

Phylogenetic Heritability
Introduced as a term with the PMM method (Housworth
et al. 2004), the phylogenetic heritability quantifies how much
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of the trait variance is attributable to g based on a fit of the
assumed evolutionary model (in this case, BM or OU). For the
BM and the OU processes, the genotypic variance is a func-
tion of the model parameters and the time-distance from the
root of the ultrametric tree, t (Hansen 1997; Housworth et al.
2004):

VarBMðt; rÞ ¼ r2t (16)

VarOUðt; a; rÞ ¼ r2

2a
1� expð�2atÞÞ:ð (17)

Given the assumption that g and e are uncorrelated, the
phenotypic variance is the sum of the genotypic variance and
r2

e . Therefore, the phylogenetic heritability is also a function of t:

H2
BMðt; r; reÞ ¼

VarBMðt; rÞ
VarBMðt; rÞ þ r2

e

¼ r2t

r2tþ r2
e

; (18)

H2
OUðt; a; r; reÞ ¼

VarOUðt; a; rÞ
VarOUðt; a;rÞ þ r2

e

¼
r2

2a
ð1� expð�2atÞÞ

r2

2a
1� expð�2atÞ þ r2

e :
�

(19)

The above dependency of H2
OU and H2

BM on time is posing
a problem in the case of a nonultrametric transmission tree,
because the tips are at different time-distance from the root
and do not share the same genotypic and phenotypic vari-
ance. We tested two possible work arounds: 1) evaluating the
heritability at the mean root-tip distance, �t (Leventhal and
Bonhoeffer 2016); and 2) using an empirical definition of the
phylogenetic heritability based on the empirical variance in
the observed population:

H2
e ¼ 1� r2

e

s2ðzÞ : (20)

PMM and POUMM Log-Likelihood
The PMM and the POUMM log-likelihood represents the log-
probability density of the observed data at the tips of the tree
for given values of the model parameters, H. For PMM,
H ¼< g0; r;re >; for POUMM H ¼< g0; a; h; r; re >.
Given that the two models are Gaussian, the log-likelihood is
defined as the Gaussian log-probability density function:

‘‘ðHÞ ¼ lnfðzjHÞ ¼ � 1

2
ðNlnð2pÞ þ lnjVHj þ

ðz� lHÞ
0V�1

H ðz� lHÞÞ;
(21)

where z is the observed vector of trait values at the tips, lH is
the mean vector at the tips (li ¼ g0 in the case of BM; li

¼ expð�atiÞg0 þ ð1� expð�atiÞÞh in the case of OU),
and VH is the variance covariance matrix with off-diagonal
elements given by the nominators and diagonal elements
given by the denominators in equations (2) and (3),
respectively.

PMM and POUMM Inference in the Toy-Model Simulations
The POUMM and PMM inference was done using maximum
likelihood (ML) fit.

PMM and POUMM Inference on HIV Data
For HIV data, in addition to an ML-fit, we performed a
Bayesian (MCMC) fit using an adaptive Metropolis algorithm
with coerced acceptance rate (Vihola 2012) written in R
(Scheidegger 2012).

The MCMC sampling was performed on the parameters
g0, a, h, H2ð�tÞ and r2

e (for likelihood and posterior density
calculation, the parameter r2 was mapped back from H2ð�tÞ
according to eqs. 18 and 19). The prior was specified as a
joint distribution of independent variables: ðg0; a; h; H2ð�tÞ;
r2

eÞ � N ð4:5; 3Þ � Expð0:02Þ � N ð4:5; 3Þ � Uð0; 1Þ
� Exp ð0:02Þ. In specifying the prior distribution, the main
objective has been to use a weakly informed prior, thus,
allowing the MCMC to explore a large volume of the param-
eter space without overwriting the signal in the data. This was
verified by the nearly flat prior densities contrasting with
sharply peaked posterior densities proving the presence of
strong signal in the data (compare prior vs. posterior densities
on supplementary fig. S8B, Supplementary Material online).
To validate that the results were not sensitive to the param-
etrization and the definition of the prior, we tested other
parametrizations and priors (e.g., ða; h; r2; r2

eÞ � Expð0:01Þ
�Uð0; 100Þ � Expð0; 10�4Þ � Expð0:01Þ).Theseresultedin
matchingposterior means and HPDs forall sampled and derived
parameters(notreported).TheadaptiveMetropolisMCMCwas
run for 4.2Eþ 06 iterations, of which the first 2Eþ 05 were used
for warm-up and adaptation of the jump distribution variance–
covariancematrix.Thetargetacceptanceratewassetto0.01and
the thinning interval was set to 1,000. The convergence and
mixing of the MCMC was validated by visual analysis (supple-
mentary fig. S8A, Supplementary Material online) as well as by
comparison to a parallel MCMC-chain started from a different
initial state.Calculationof 95% HPD was doneusingthefunction
“HPDinterval” from the coda package (Plummer et al. 2006).

Computer Simulations of the Toy Epidemiological
Model
The parameters defining the within- and between-host dy-
namics used in the simulations are written in supplementary
table S2, Supplementary Material online.

The simulations were implemented as stochastic random
sampling of within- and between-host events (i.e., risky con-
tact, transmission, mutation, diagnosis, death) in discrete
time-steps of length 0.05 (arbitrary time-units). The transmis-
sion history as well as the history of within-host strain sub-
stitutions was preserved during the simulations in order to
reproduce exact transmission trees and to extract donor and
recipient values at moments of transmission for the calcula-
tion of b0.

Software
This study relies on two accompanying R-packages:
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• toyepidemic implementing the toy epidemiological model;
available at https://github.com/venelin/toyepidemic.git,
last accessed January 9, 2018; and

• patherit providing a common interface for evaluating the
various heritability estimators on simulated and real data.
The pair correlation and regression slope estimators are
implemented as functions in this package; the phyloge-
netic heritability estimators (PMM and POUMM) are
implemented as external calls to the R-package
POUMM (Mitov and Stadler 2017). The patherit package
is available at https://github.com/venelin/patherit.git, last
accessed January 9, 2018.

External Dependencies
The following third-party R-packages were used: ape v3.4
(Paradis et al. 2004), data.table v1.9.6 (Dowle and Srinivasan
2017), adaptMCMC v1.1 (Scheidegger 2012), Rmpfr v0.6-0
(Maechler 2016), and coda v0.18-1 (Plummer et al. 2006).
All programs have been run on R v3.2.4 (R Core Team 2016).

Data Availability
All scripts for performing the simulations and real data anal-
yses presented in this paper are available at https://github.
com/venelin/Estimating-Pathogen-Trait-Heritability.git, last
accessed January 9, 2018. Large output data files from the
toy model simulations are available upon request to the
authors. The UK HIV data are not made available at the above
address, because the authors do not have the right to redis-
tribute this data (readers are referred to the UK drug resis-
tance database).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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