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1 A general framework for parallel tree traversal

Through the rest of this document, we use the followiong mathematical notation. Given is a rooted

phylogenetic tree T with a total of M nodes, including N<M tips denoted 1,...,N , M−N−1 internal

nodes denoted N+1,...,M−1, and a root node denoted M (Fig. 1a,d). Without restrictions on the tree

topology, non-ultrametric trees (i.e. tips have different heights) and polytomies (i.e. nodes with any finite

number of descendants) are accepted. We denote by Ti the subtree rooted at node i. For any tip or

internal node i, we denote its parent node by Parent(i). For any node j, we denote by Desc(j) the set of

its direct descendants (Desc(j)=φ if j denotes a tip). Furthermore, for any i∈Desc(j), we denote by ti

the length of the branch leading to i. Associated with each node i there is an input data in the form of a

single or multivariate categorical or numerical value denoted zi. For tips, zi can be partially unobserved

(having NA entries), while for internal nodes or the root it can also be fully absent (NULL). We denote

by zi the sub-vector of input data for the nodes in Ti. Associated with each node, i, there is a vector of

model parameters, Θi. We use bold style t, z and Θ when denoting the vectors of all branch lengths,

input data and parameters.

Let FT (t,z,Θ) be a function of the branch lengths, the input data and the parameters. A post-order

tree traversal algorithm can be used to calculate FT if, for all subtrees Tj of T , there exist functions

Sj(t,z,Θ), hereby called ”states”, satisfying the following rules:

(1) FT (t,z,Θ) can be calculated from SM(t,z,Θ);

(2) For each node j∈{1,...,M}, there exists a (recursive) relationship Rj between Sj and the set of

states at j’s descendants, such that:

Sj(t,z,Θ)=Rj

({
Si(t,z,Θ) : i∈Desc(j)

}
,t,z,Θ

)
. (S1)

We note that analogical terms can be defined for pre-order tree traversal. In this case the target

functions are values ZT ,j(t,z,Θ) corresponding to the nodes j∈{1,...,M}, and rule (2) is updated to:

(2’) ZM can be calculated from the input data. For each node j∈{1,...,M−1}, there exists a (recursive)

relationship R′j between Zj and ZParent(j), such that:

Zj(t,z,Θ)=R′j
(
ZParent(j)(t,z,Θ),t,z,Θ

)
. (S2)

The states, i.e. the values of the functions Sj and Zj, may be deterministic or stochastic functions of the

input tree and data. They can be real numbers, vectors, matrices or higher order combinations thereof.
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In Supplementary information, we provide example usages of the parallel traversal framework. In each

of these examples, we solve a particular problem, such as calculating the likelihood of a continuous time

Markov model for a categorical or a continuous trait. In terms of the framework, the task boils down to

formulating the node states Sj(t,z,Θ) and the recursive functions Rj satisfying rules (1) and (2).

For the rest, we focus on post-order tree traversal or pruning, noting that the algorithms for pre-order

traversal are simple analogies. The SPLITT library implements both traversal types.

1.1 Strategies for parallel post-order tree traversal (pruning)
1.1.1 Queue-based parallel pruning

It is possible to parallelize the computation of the states Sj across multiple computing threads using a

first-in-first-out list (queue) of the nodes in the tree (Algorithm S1). Initially, the queue is filled with all

tips in the tree and a counter with the number of direct descendants is set for each internal or root node.

Then, each thread takes a node i from the front of the queue, calculates its state and decrements the

counter of Parent(i). If the counter of Parent(i) has become zero, Parent(i) is added to the queue, so

that it will be processed as soon as a free thread picks it from the queue. Assuming an unlimited number

of threads and a negligible cost of the queue- and the counter- operations, Algorithm S1 guarantees

that a node will be processed immediately after all of its direct descendants have been processed. Thus,

in theory, Algorithm S1 maximizes the parallel execution. However, an implementation of the atomic

operations on the queue and the counters would have to rely on a thread synchonization mechanism such

as a mutex, which can be slow on some systems. Thus, a decent parallelization speed-up would only be

possible if the overall cost of synchronization is insignificant compared to the functions Rj.

1.1.2 Range-based parallel pruning

We consider an alternative of Algorithm S1 minimizing the synchronization overhead. This approach

consists in splitting the tree into ”generations” of nodes, such that nodes within a generation can be

processed in random order and in parallel, but only if all generations containing descendants of these

nodes have already been processed (Fig. 1). A “master” thread is responsible for launching a team of

“worker” threads on each generation, starting from a generation of all tips, then taking their parents, and

so on until reaching the root of the tree. To be efficient, this procedure requires that the data associated

with the nodes in a generation occupy a consecutive region in the address-space. This eliminates the

need for synchronization between the worker threads, because each worker thread can deduce its own

portion based on its thread-id and the address-range of the generation. To orchestrate the worker teams,

the master thread only needs to keep account of the address-ranges. Technically, this is accomplished by

iterating over a vector of offsets (Algorithm S2).
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Algorithm S1 Queue-based parallel pruning

Input: T , t, z, Θ

Output: SM(t,z,Θ)

/* a vector of M states */

1 State←− [...]M /* a vector of the numbers of remaining descendants for each node */

2 NumDesc←−
[
|Desc(i)| : i∈{1,...,M}

]
/* initiate Queue with all tips: */

3 Queue←− [1,...,N ] begin Parallel block

4 while (TRUE) do

/* if Queue is empty, thread waits. */

5 j←−PopFirst(Queue) State[j]←−Rj
({
State[i] : i∈Desc(j)

}
,t,z,Θ

)
if (j<M) then

/* the root has not been processed yet. */

6 NumDesc[Parent(j)]←−NumDesc[Parent(j)]−1 if (NumDesc[Parent(j)]==0) then

/* If Queue is currently empty a waiting thread will be notified. */

7 AddLast(Queue, Parent(j))

8 else

/* the root has been processed. */

/* Notify waiting threads by adding a stopping node-id to Queue. */

9 AddLast(Queue, M+1) /* All work done, exit the loop. */

10 break

11 return State[M ]

In Algorithm S2, the number of synchronization points is reduced to the number of generations, K.

In balanced trees, K would increase logarithmically with N and, for big N , the tree would be split into

a few generations of many nodes (panel p=0.5 on Fig. 2). Conversely, in strongly unbalanced trees, K

would tend to increase linearly with N and the tree would be split into many generations of a few nodes

(rightmost panels on Fig. 2). This would result in low parallel speed-up and excessive synchronization cost

for both, the queue-based and the range-based algorithms. Also noteworthy is the fact that Algorithm S2

reduces the number of synchronization points at the cost of some parallelization. If each worker thread

gets assigned to an approximately equal number of nodes in a generation and if a few of the nodes take

much longer time to process than the rest, then most of the worker threads would have to wait until the

last node in the generation has been processed.

5
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Algorithm S2 Range-based parallel pruning

Input: T , t, z, Θ

Output: SM(t,z,Θ)

Data:

/* A pre-calculated vector with starting offsets for each generation: */

12 Range=
[
0,N,N+|G1|,N+|G1|+|G2|,...,M−1,M

]
K+1

/* a vector of M elements */

13 State←− [0,...,0]M

/* The master thread iterates over the generations: */

14 foreach k∈{1,...,K} do

/* The master thread starts a team of worker threads running equal portions of the

following loop: */

15 foreach j∈{Range[k]+1,...,Range[k+1]} do

16 State[j]←−Rj
({
State[i] : i∈Desc(j)

}
,t,z,Θ

)

17 return State[M ]

These and other subtleties indicate that there is no “one size fits all” strategy when it comes to

maximizing parallel speed-up. The framework provides two ways to deal with these: (a) allowing the

user to choose a parallelization mode before executing a pruning procedure on a given tree and data;

(b) providing a mode “auto”, in which the framework compares the execution time of different pruning

algorithms during the first several calls on a given tree and data, choosing the fastest one for all subsequent

calls.

1.1.3 Hybrid parallel/sequential strategies

An important problem occurring with all parallel pruning strategies is that the number of lineages

tends to decreases exponentially towards the root of the tree. As a result, if the original thread-team

consisted of numerous threads each one reserving one of multiple processing cores, there will be many

idle threads/cores as the pruning approaches the root. While this issue could potentially be solved at the

level of the multi-threading back-end, it is possible to implement a hybrid pruning strategy similar to the

rake-compression algorithm described in (Reif, 1989). Reif (1989) introduce two operations: rake (could

be seen as the parallel calculation on the nodes in one generation) and compress (compression of chains).

For example, on a ladder tree (see panel p=0.01/N (ladder) on Fig. 2), after visiting the generation of

tips, one obtains a chain: the chain should be processed sequentially on one thread (compressed), thus,

reducing the synchronization thread-starvation issues.

6
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1.1.4 Parallel pruning orders

As described in the main text, to maximize the potential for parallel execution SPLITT divides the

evaluation of the recursive functions Rj in a InitNode, a VisitNode, and a PruneNode operation (see

Fig. 1c,d). Further, SPLITT rearranges the node-ids (and, hence the data) associated with the nodes in

the computer memory, so that the InitNode and the VisitNode operations can be performed on ranges

of consecutive node-ids (Fig. 1c). Performing these operations on a range of consecutive addresses in

the memory has a potential to increase the efficiency of computation, because modern CPUs provide

vectorized instruction sets, i.e. low-level processor instructions, such as (addition and multiplication)

that can be executed simultaneously on a group of 2, 4 or more consecutive words in the memory.

Another benefit from ordering the VisitNode operations over such ranges is that the data associated with

these nodes will tend to be less fragmented and, therefore, it will be found more often in the processor

cache.

In general, there is no arrangement of the nodes in the memory, in which both, the VisitNode and

the PruneNode operations will be executed on ranges of consecutive nodes. For example, the range of

daughter-nodes 1, 2, 3 (see step 1. Prune-range [1-3], Fig. 1d) corresponds to the parent nodes 6, 8

and 7. In a bigger tree, the parents could well be nodes 6, 25, 12 or any other non-consecutive ids.

Thus, the efficiency of the calculation can, in principle, be affected by the order in which the ranges

of VisitNode- and PruneNode-operations are processed. SPLITT provides several possible arrangements

(called “orders”) of the execution cycle of these operations, which are all equivalent with respect to

the result of the calculation, but may have different parallel efficiency, depending on the tree and the

application-specific traversal operations. In the performance benchmark, we denote by “parallel range”

the order which is illustrated on Fig. 1d. Specifically, this reflects the following cycle:

1. First, execute in parallel InitNode(i) for each 1≤ i≤M ;

2. Then, for each prune-range [rb,re], execute in parallel { VisitNode(i); PruneNode(i, Parent(i)); }

for each rb≤ i≤re. The prune-ranges are formed as subsets of “Visit”-able nodes with contiguous

ids that are not siblings, i.e. do not have a shared parent. This guarantees that the PruneNode

operation is synchronized between siblings.

Other orders are documented in the SPLITT online manual. Except for the noticeably slower

performance of the queue-based order, no significant difference in the execution times has been observed

between the other parallel orders (not reported).

7
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Table S1. Population properties at the tips of the phylogeny under BM and OU models and their mixed counterparts The
acronyms are: PBM - Phylogenetic Brownian motion (without non-heritable component); PMM - Phylogenetic Mixed Model
(adding a non-heritable component to PBM); POU - Phylogenetic Ornstein-Uhlenbeck (without non-heritable component),
also known as ”Hansen’s model” or Single Stationary Peak (SSP); POUMM - Phylogenetic Ornstein-Uhlenbeck Mixed
Model (adding a non-heritable component to the POU model. Expressions for the OU-models were adapted from (Hansen,
1997). µΘ,i: expected value at tip i; VΘ,ii: expected variance for tip i; VΘ,ij : expected covariance of the values of tips i

and j. Note that the trait expectation and variance for a tip i depends on its height (hi), and the trait covariance for a pair
of tips (ij) depends on the height of their mrca (h(ij)), and, in the case of POUMM, on their patristic distance (dij).

PBM PMM POU POUMM

Θ: <gM ,σ> <gM ,σ,σe> <gM ,α,θ,σ> <gM ,α,θ,σ,σe>

µΘ,i: gM gM e−αhigM +
(
1−e−αhi

)
θ e−αhigM +

(
1−e−αhi

)
θ

VΘ,ii: σ2hi σ2hi+σ
2
e

σ2

2α

(
1−e−2αhi

)
σ2

2α

(
1−e−2αhi

)
+σ2

e

VΘ,ij: σ
2h(ij) σ2h(ij)

σ2

2α
e−αdij

(
1−e−2αh(ij)

)
σ2

2α
e−αdij

(
1−e−2αh(ij)

)
2 Examples of using the parallel tree traversal framework

In this section, we show example usages of the parallel traversal framework. In each of these examples,

we solve a particular problem, such as calculating the likelihood of a continuous Markov model for a

categorical or a continuous trait. In terms of the framework, the task boils down to formulating the node

states Sj(t,z,Θ) and the recursive functions Rj satisfying rules (1) and (2). The code for these examples

is provided on github at the locations indicated in the sub-sections below.

2.1 Example 1. The generalized 3-point structure pruning algorithm for Gaussian models of
continuous trait evolution

Ho and Ané (2014) noticed that the computational complexity in multivariate Gaussian and some non-

Gaussian models concentrates in the calculation of determinants |VΘ| and quadratic quantities of the

form QΘ =X′ΘV−1Θ YΘ, where VΘ represents the variance covariance matrix expected under the model

specified by Θ and the matrices XΘ and YΘ represent centered observed data at the tips in the tree. For

example, in the case of Brownian motion and Ornestein-Uhlenbeck models, the log-likelihood function is

equal to the log-density of a multivariate Gaussian distribution:

lnf(z|Θ)=−1

2

(
N ln(2π)+ln|VΘ|+(z−µΘ)′V−1Θ (z−µΘ)

)
, (S3)

where µΘ and VΘ denote functions of the tree and the model parameters Θ representing the the

expectation under the model for the mean-vector and the variance-covariance matrix of the trait-values

at the tips in the tree. The mathematical formulas of each element of µΘ and VΘ for four single-trait

phylogenetic comparative models are given in Table S1.

8
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Ho and Ané (2014) developed a pruning algorithm which allows to calculate |VΘ| and QΘ

simultaneously and without constructing or allocating the matrix VΘ in memory, provided VΘ has a ”3-

point structure”. Then, they showed several examples of Gaussian models such as Brownian motion and

Ornstein-Uhlenbeck, as well as non-Gaussian models, such as phylogenetic logistic and Poisson regression,

where VΘ is or can be ”converted” to a 3-point structured matrix (discussed later). Adapting the notation

from (Ho and Ané, 2014, p. 399), we define the node states as Sj(t,z,Θ)=
〈
pA,j,pj,µ̂Y,j,µ̃

′
X,j,ln|V|j,Qj

〉
.

The recursive functions Rj follow immediately from points 1 and 2 of the algorithm (Ho and Ané, 2014):



Sj(t,z,Θ) = 〈 pA,j =0,

pj = 1
tj
,

µ̂Y,j =yΘ,j,

µ̃′X,j =x′Θ,j,

ln|V|j =lntj,

Qj =x′Θ,jyΘ,j 〉

if j≤N

Sj(t,z,Θ) = 〈 pA,j =
∑

i∈Desc(j)pi,

pj = pA,j
1+tjpA,j

,

µ̂Y,j =
∑

i∈Desc(j)
pi
pA
µ̂Y,i,

µ̃′X,j =
∑

i∈Desc(j)
pi
pA
µ̃′X,i,

ln|V|j =
∑

i∈Desc(j) ln|V|i+ln(1+tjpA,j),

Qj =
∑

i∈Desc(j)Qi+ln(1+tjpA,j) 〉

otherwise.

(S4)

A SPLITT-based implementation of the above pruning scheme is available at https://github.com/

venelin/ThreePointUsingSPLITT.git.

The caveat in applying the 3-point algorithm is that except for BM models, the matrix VΘ does not

necessarily satisfy the 3-point condition (Ho and Ané, 2014). As the authors show, it is still possible

to use the algorithm in that case, provided that VΘ satisfies a ”generalized 3-point condition” (Ho

and Ané, 2014). More precisely, in most of their examples, the authors showed that there exist a

transformation of the branch lengths, t̃, diagonal matrices D1 and D2 with non-zero diagonal elements

and a 3-point structured matrix ṼΘ, such that ṼΘ is equal to the variance-covariance on the tree T̃

with the transformed branch lengths and VΘ =D1ṼΘD2. If so, the algorithm is applied to ṼΘ using t̃

9
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and transformed data X̃=D−12 X, Ỹ=D−11 Y. Then the quadratic form of interest, QΘ, would be equal

to the resulting quadratic form at the root, QM and the determinant |VΘ| is obtained by the formula:

|VΘ|= |D1||ṼΘ||D2| (S5)

Nevertheless, the branch transformation required for a model to satisfy the 3-point condition is specific for

every model. This makes it hard to apply the 3-point algorithm in general for single-trait and multi-trait

Gaussian models. An alternative approach is proposed in the next example.

2.2 Example 2: Calculating the POUMM log-likelihood

In this section we describe two pruning algorithms for calculating the likelihood of the single-trait

phylogenetic Ornstein-Uhlenbeck mixed model. First, we briefly introduce the model, its biological

interpretation and its parameters. Then, we show how the likelihood can be calculated using the 3-

point algorithm described in the previous example, and using a quadratic polynomial representation of

the likelihood function in terms of the root value. The code for these two alternative implementations

is available at https://github.com/venelin/ThreePointUsingSPLITT.git and at https://github.

com/venelin/POUMM.git, respectively. For the example in the main text (Fig. 1), we have used the

quadratic polynomial likelihood representation of the PMM model, which represents a simpler special

case of the POUMM. For this example, the code is available at https://github.com/venelin/

PMMUsingSPLITT.git.

2.2.1 The model

The P(OU)MM models the evolution of a continuous trait, z, along the lineages of a phylogenetic tree

T with branch lengths t. The trait value is modeled as a sum of a non-heritable component, e, and

a heritable component, g, which (i) evolves continuously according to a Brownian motion (BM) or an

Ornstein-Uhlenbeck (OU) process along each branch; (ii) gets inherited by the branches descending from

each internal node. In biological terms, g is interpreted as the contribution to the phenotype that has

evolved in association with species’ genetic sequence used to build the phylogeny; e is a non-heritable

component, which can be interpreted in different ways, depending on the application, i.e. a measurement

error, an environmental contribution, a residual with respect to a model prediction, or the sum of all

these. The BM/OU stochastic process modeling the evolution of g is defined as a system of equations:

10
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z(t)=g(t)+e (S6)

dg(t)=α[θ−g(t)]dt+σdWt (S7)

g(0)=gM , (S8)

where gM denotes the initial value of g at the root of T , θ denotes a long-term optimum value for the

trait, α>0 denotes the strength of selection (i.e. long-term tendency of g towards θ), σ>0 denotes the

unit-time standard deviation of fluctuations in g due to random drift and Wt denotes the standard Wiener

process (Grimmett and Stirzaker, 2001). The stochastic differential equation S7 defines an OU-process,

representing a random walk tending towards θ with stronger attraction for bigger difference between g(t)

and θ and/or bigger selection strength α (Ornstein and Zernike, 1919; Uhlenbeck and Ornstein, 1930).

The model assumptions for e are that they are independent and identically distributed (i.i.d.) normal

with mean 0 and standard deviation σe>0 at the tips. Any process along the tree that gives rise to this

distribution at the tips may be assumed for e. For example, in the case of epidemics, a newly infected

individual is assigned a new e-value which represents the contribution from its immune system and this

value can change or remain constant throughout the course of infection. In particular, the non-heritable

component e does not influence the behaviour of the stochastic process g(t). Thus, if we were to simulate

trait values z on the tips of T , we could first simulate the OU-process from the root to the tips to obtain

g, and then add the white noise e (i.e. an i.i.d. draw from a normal distribution) to each simulated g

value at the tips. In the limit α→0, the OU-process converges to a BM-process with unit-time standard

deviation σ (Fig. 1b).

Here we describe two ways to calculate the POUMM likelihood using a post-order traversal of the tree,

which can be easily incorporated with the framework. The first approach is based on the generalized

3-point structure algorithm (Ho and Ané, 2014). This approach has the caveat that it requires a model-

specific branch-length transformation. The second approach is based on direct integration over the

ancestor genotypic values at the internal nodes, capitalizing on a recurrent quadratic polynomial formula.

Previously, a similar integration technique has been described in (FitzJohn, 2012). The advantage of the

quadratic polynomial representation described here is that it can be generalized to multivariate OU

models as well as a more general class of Gaussian models (Mitov et al., 2018).

11
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2.2.2 Generalized 3-point structure of the POUMM variance-covariance matrix

The POUMM likelihood is defined as the multivariate probability density of an observed vector z at the

tips of T for given model parameters Θ=<gM ,α,θ,σ,σe>:

``(Θ)=ln(f(z|T ,t,Θ)). (S9)

The probability density function, f is multivariate Gaussian with mean vector µΘ and variance-

covariance matrix VΘ written in Table S1. Since VΘ has a generalized 3-point structure (Ho and Ané,

2014), we can apply the recursion in eq. S4, upon a transformation of the branch lengths and the data.

This is obtained through adapting the transformation for an non-mixed OU-model in a ultrametric tree

(Ho and Ané, 2014) to accommodate the non-heritable variance:

t̃i=
σ2

2α

[
e2αT

(
e2αhi−e2αhParent(i)

)]
+ σ2

e

e2αui
δ(i≤N) for i∈{1,...,M−1} (S10)

X̃i=Ỹi=
zi−µi
eαui

for i∈{1,...,N}, (S11)

where X̃ and Ỹ are identical N -vectors, T is the maximum tip-height in the tree and ui=T−hi for

i∈{1,...,N}. After running the post-order traversal, using eq. S4 as a VisitNode operation, we apply eq.

S5, to obtain |VΘ| and eq. S3 to obtain the log-likelihood.

We note that the branch transformation (eq. S10) can be done ”locally” on every branch, using pre-

calculated heights of the parent and daughter nodes connected by the branch. Thus, it is safe to include the

transformation in the VisitNode operation and the parallelization of pruning would not suffer. Otherwise,

the transformation would have had to be done in a preprocessing step. Again, this is a model specific

consideration.

2.2.3 A quadratic polynomial representation of the POUMM log-likelihood

We begin by defining for each nodes j states, Sj(t,z,Θ), and recursive functions Rj that allow the

calculation of the likelihood, ``(Θ), from SM . It turns out that ``(Θ) has a simple representation as a

quadratic polynomial of gM (root state), which can be obtained by pruning–wise integration over the

unobserved internal node states, gi, progressing from the tips to the root. We formalize this idea in the

following theorem:

Theorem S1 (Recurrent quadratic polynomial representation of the POUMM log-likelihood). For α≥0,

a real θ and positive σ and σe, the POUMM log-likelihood can be expressed as a quadratic polynomial of

12
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gM :

``(Θ)=aMg
2
M +bMgM +cM , (S12)

where aM<0, bM and cM are real coefficients. We denote by u(α,t) the function:

u(α,t) :=


α/(1−eαt), for α>0

−1/t, for α=0

(S13)

Then, the coefficients in eq. S12 can be expressed with the following recurrent relation:

1. For j∈{1,...,N} (tips):

aj =− 1

2σ2
e

;bj =
zj
σ2
e

;cj =−
z2j

2σ2
e

−ln
√

2πσ2
e (S14)

2. For j>N (internal nodes) or j=M (root):

aj =
∑

i∈Desc(j)

aiu(α,2ti)

u(α,2ti)−α+σ2ai

bj =
∑

i∈Desc(j)

u(α,2ti)[2θai(e
αti−1)+bie

αti ]

u(α,2ti)−α+σ2ai

cj =
∑

i∈Desc(j)

{
ci+αti−

0.25b2iσ
2

−α+aiσ2+u(α,2ti)
−

0.5ln

(
−α+aiσ

2+u(α,2ti)

u(α,2ti)

)
+

αθ[aiθ−(bi+aiθ)e
αti ]

u(α,ti)+(−α+aiσ2)(1+eαti)

}
.

(S15)

Proof. Induction from the tips to the root of the tree.

• Basis: For a tip-node i, Ti is the trivial tree consisting of this tip-node only and the pdf of zi, conditioned

on the unobservable genotypic value gi, is given by the normal pdf with mean gi and variance σ2
e . This

pdf can be written as:

f(zi|gi;σe) = N (zi;gi,σ
2
e)

= 1√
2πσ2

e

e
− (zi−gi)

2

2σ2e

= e
− 1

2σ2e
g2i+

zi
σ2e
gi−

z2i
2σ2e
−0.5ln(2πσ2

e)

(S16)

By defining ai=− 1
2σ2
e
, bi=

zi
σ2
e

and ci=− z2i
2σ2
e
−0.5ln(2πσ2

e) and taking the natural logarithm of the pdf

we obtain the log-likelihood representation from eq. S12, where aM<0, bM and cM can be calculated

from the observed value zi and the model parameter σe.

• Inductive hypothesis: Assume that for an internal node j, the statement of the theorem has been proven

for all subtrees Ti, i∈Desc(j).

• Inductive step: Assuming that gj is known, we consider the OU process starting from gj and

parametrized by α and σ. Under this process, the expected distribution at time ti is normal with

13
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mean µji=e−αtigj+(1−e−αti)θ and variance σ2
ji=(1−e−2αti) σ2

2α
. Then, the probability of zi given gj

is given by the integral

f(zi|Θ,ti,gj) =
∞∫
−∞

f(gi|Θ,ti,gj)×eaig
2
i+bigi+cidgi

=
∞∫
−∞
N
[
gi;µji,σ

2
ji

]
×eaig2i+bigi+cidgi

=
∞∫
−∞

e(pji+ai)gi
2+(qji+bi)gi+(rji+ci)dgi , where

pji = − 1
2σ2
ji

=− αe2αti

σ2(e2αti−1)

qji = µji
σ2
ji

=
2αeαti [gj+θ(eαti−1)]

σ2(e2αti−1)

rji = − µ2
ji

2σ2
ji
− 1

2
ln(2πσ2

ji)

= − α[gj+θ(eαti−1)]
2

σ2(e2αti−1) − 1
2
ln

(
πσ2(1−e−2αti)

α

)

(S17)

We notice that pji, qji and rji in eq. S17 are not defined in the case of BM (α=0). In this case, we take

the limit for α→0 represented by the case α=0 of function u(α,t) (eq. S13). By substituting u(α, t)

in the expressions for pji, qji, rji (eq. S17) we obtain:

pji = e2αtiu(α,2ti)

σ2

qji = −u(α,2ti)[gj+θ(eαti−1)]
σ2

rji =
u(α,2ti)[gj+θ(eαti−1)]

2

σ2 − 1
2
ln
(
− πσ2

u(α,2ti)e2αti

)
.

(S18)

Since ai<0 and, for positive t and α∈ [0,∞), u(α, t) accepts strictly negative values in the interval

[−1/t,0), the integral in eq. S17 has a closed form solution:

∞∫
−∞

e(pji+ai)g
2
i+(qji+bi)gi+(rji+ci)dgi

=exp

[
−(qji+bi)2

4(pji+ai)
+(rji+ci)+ln

(√
π

−(pji+ai)

)]
=eajig

2
j+bjigj+cji ,where

aji = aiu(α,2ti)

u(α,2ti)−α+σ2ai

bji = u(α,2ti)(e
αti (2θai+bi)−2θai)

u(α,2ti)−α+σ2ai

cji =ci+αti− 0.25b2iσ
2

−α+aiσ2+u(α,2ti)
−

0.5ln
(
−α+aiσ2+u(α,2ti)

u(α,2ti)

)
+

αθ[aiθ−(bi+aiθ)eαti ]
u(α,ti)+(−α+aiσ2)(1+eαti )

(S19)

In eq. S19 above, aji<0 because it is a fraction with a positive nominator and a negative denominator

(note that ai<0 by the inductive hypothesis and u(α,2ti)<0 by definition). Since the vectors zi,

i∈Desc(j), are conditionally independent given gj, the conditional pdf of zj factorizes as:

14
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f(zj|Θ,gj,Tj) =
∏

i∈Desc(j)

f(zi|Θ,ti,gj)

=
∏

i∈Desc(j)

eajig
2
j+bjigj+cji

= exp

 ∑
i∈Desc(j)

aji

g2j +

 ∑
i∈Desc(j)

bji

gj+
∑

i∈Desc(j)

cji

.
(S20)

By denoting aj =
∑

i∈Desc(j)aji, bj =
∑

i∈Desc(j)bji and cj =
∑

i∈Desc(j)cji and noticing that aj<0 as a

sum of negative terms, we have proven the inductive step and, thus, the theorem.

�

The following two corollaries give the recursive functions Rj for the POUMM and the PMM model,

respectively. These follow from the eqs. S14 and S15, theorem S1.

Corollary S1. The recursive functions Rj for obtaining the quadratic polynomial representation of the

POUMM log-likelihood (eq. S12) are given by the equation:



Sj(t,z,Θ) = 〈 aj =−0.5/σ2
e ,

bj =zj/σ
2
e ,

cj =−0.5
[
z2j /σ

2
e+ln(2πσ2

e)
]
〉

if j≤N

Sj(t,z,Θ) = 〈 aj =
∑

i∈Desc(j)
aiu(α,2ti)

u(α,2ti)−α+σ2ai
,

bj =
∑

i∈Desc(j)
u(α,2ti)[2θai(eαti−1)+bieαti ]

u(α,2ti)−α+σ2ai
,

cj =
∑

i∈Desc(j)

[
ci+αti− 0.25b2iσ

2

−α+aiσ2+u(α,2ti)
−

0.5ln
(
−α+aiσ2+u(α,2ti)

u(α,2ti)

)
+

αθ[aiθ−(bi+aiθ)eαti ]
u(α,ti)+(−α+aiσ2)(1+eαti )

]
〉

otherwise.

(S21)
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Corollary S2. The recursive functions Rj for obtaining the quadratic polynomial representation of the

PMM log-likelihood (eq. S12) are given by the equation:



Sj(t,z,Θ) = 〈 aj =−0.5/σ2
e ,

bj =zj/σ
2
e ,

cj =−0.5
[
z2j /σ

2
e+ln(2πσ2

e)
]
〉

if j≤N

Sj(t,z,Θ) = 〈 aj =
∑

i∈Desc(j) ai/(1−2aiσ
2ti),

bj =
∑

i∈Desc(j) bi/(1−2aiσ
2ti),

cj =
∑

i∈Desc(j)

[
ci−ln

√
1−2aiσ2ti+b

2
iσ

2ti/(2−4aiσ
2ti)

]
〉

otherwise.

(S22)

2.3 Example 3: Models of categorical trait evolution

It is worthy mentioning that SPLITT can be readily applied to any pruning-wise calculation, including

calculating the likelihoods of categorical trait models. Here, we show how this can be done for a binary

trait substitution model. The code for this example is available at https://github.com/venelin/

BinaryPoissonUsingSPLITT.git.

Consider a trait taking values in {0,1} evolving independently along the lineages of a phylogenetic tree,

T with branch lengths t. A continuous-time Markov model can be used to characterize the transitions of

the trait value along each branch (Felsenstein, 1983; Pagel, 1994). This model assumes constant rates of

change from 0 to 1, q01 and from 1 to 0, q10, representing the probability that the change has occurred

during an infinitesimal interval of time. These rates are used to define a rate matrix:

Q=

−q01 q01

q10 −q10

. (S23)

Given Q, the transition probability matrix P(t) for an arbitrary long period t is given by

P(t)=

P00(t) P01(t)

P10(t) P11(t)

=C

eλ1t 0

0 eλ2t

C−1 (S24)

where λi are the eigenvalues of Q and C is a matrix, which’s ith column represents the ith eigenvector of Q

(Pagel, 1994). Assuming that the value at the root is known to be zM , we want to find the probability with

which the model specified by the parameters Θ=(q01,q10) generates an N -vector of values, z observed at

the tips. This represents the conditional likelihood LT (t,z,Θ,zM). The pruning algorithm for calclulating

L relies on calculating the “fragmentary” likelihood Li(b)=P (zi|zi=b;Θ) for each node i and each

16
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b∈{0,1} (Felsenstein, 1983). In terms of the framework, we define the state Sj(t,z,Θ) of a node j as the

pair <Lj(0),Lj(1)>. Following eq. 4 in (Felsenstein, 1983), the recursive Rj are given by:

Sj(t,z,Θ)=


〈δ(zj =0),δ(zj =1)〉 if j is a tip〈∏

i∈Desc(j)
[∑

zi
P0zi(ti)Li(zi)

]
,
∏
i∈Desc(j)

[∑
zi
P1zi(ti)Li(zi)

]〉
if j is internal,

(S25)

where we use the Kronecker delta function δ(x=y) equalling to 1 if x=y and 0, otherwise. In the above

eqation S25, the values Li(zi) are available from the descendants’ states Si. Finally, the conditional

likelihood LT (t,z,Θ,zM) is given by LM(zM), which is one of the two members in SM .

The above model can be extended to a multivariate case, such as calculating the probability of a

nucleotide or aminoacid sequence alignment as is the case in (Felsenstein, 1983). Suppose that there are

p nucleotide sites, which are evolving independently. Then, the state for a node j would represent a p×4

matrix

Sj(t,z,Θ)=


L

(1)
j (A) L

(1)
j (C) L

(1)
j (T ) L

(1)
j (G)

...
...

...
...

L
(p)
j (A) L

(p)
j (C) L

(p)
j (T ) L

(p)
j (G)

, (S26)

where the letters A, C, T and G denote the nucleotides and the superscript in parentheses denotes a site

in the alignment. To define the recursive functions Rj, equation S25 can be extended to accomodate one

row of Sj (four possible values instead of two) and evaluated p times to obtain the full state.

The model can also be extended to support correlated evolution between the sites. As shown in (Pagel,

1994), this involves extending the rate matrix Q to embed transition rates between pairs, triplets or higher

order combinations of sites in the sequence. Accounting for correlated evolution between combinations

of sites dramatically increases the computational complexity, but does not present a conceptual change

from the point of view of the pruning procedure. Thus, accommodating such models in the framework,

although involved technically, should not present a conceptual challenge.

3 The POUMM R-package

We implement the POUMM model in the form of an R-package called POUMM, which embeds the SPLITT

library as an Rcpp module (Eddelbuettel and Sanderson, 2014). Before model fitting, the user can choose

from different POUMM parametrizations and prior settings (function specifyPOUMM). A set of standard

generic functions, such as plot, summary, logLik, coef, etc., provide means to assess the quality of a fit

(i.e. MCMC convergence, consistence between ML and MCMC fits) as well as various inferred properties,

such as high posterior density (HPD) intervals (more details in the package user guide).
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3.1 Model inference

We implement maximum likelihood and Bayesian inference of the POUMM parameters, Θ, using the L-

BFGS-R convex optimization algorithm (R-function optim) and a variant of the Random Walk Metropolis

(RWM) Markov Chain Monte Carlo (MCMC) sampling (Metropolis et al., 1953). This combined inference

capitalizes on two practical ideas:

• A MCMC has higher chance to converge to the target posterior distribution faster if it has been started

from a previously estimated MLE;

• If an MCMC encounters a point in the parameter space that has higher likelihood than a previously

inferred MLE, running maximum likelihood optimization from that point is more likely to find the

global likelihood optimum.

An important step in RWM is the choice of a proposal (jump) distribution shape matrix used as a

scaling factor on each next proposal in the Metropolis algorithm. Choosing the shape matrix with respect

to the scale and the correlation structure of the parameter space minimizes the number of iterations

needed for MCMC convergence and mixing. Thus, numerous variants of the RWM have been proposed,

performing ”on-the-fly” adaptation of the shape matrix based on what has been ”learned” about the

parameter space from the past RWM iterations (Haario et al., 2001; Vihola, 2012). Of these variants, we

chose the adaptive Metropolis sampling with coerced acceptance rate, because it is shown to be robust

with respect to the posterior distribution, it performs a relatively cheap adaptation of the shape (Vihola,

2012) and it has an implementation in the R within the package adaptMCMC (Scheidegger, 2017).

The fitting of the POUMM model was implemented as a pipeline including the following steps:

1. Perform three MLE searches using the R-function optim and the L-BFGS-B method (Byrd et al.,

1995), starting from three randomly chosen points in parameter space;

2. Run three MCMC chains as follows: (i) a chain sampling from the prior distribution; (ii) a chain

sampling from the posterior distribution and started from the MLE found in step 1; (iii) a chain

sampling from the posterior distribution and started from a random point in parameters space.

3. If the parameter tuple of highest likelihood sampled in the MCMC has a likelihood higher than the

MLE found in step 1, repeat the MLE search starting from that parameter tuple;

By running MLE first and starting an MCMC chain from the MLE candidate, we increase the chance

that at least one of the MCMCs would converge faster to the posterior distribution. By comparing the

posterior samples from two MCMCs initiated from different starting points, it can be assessed whether
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the MCMCs have converged to the true posterior. We do this quantitatively by the use of the Gelman-

Rubin convergence diagnostic (Brooks and Gelman, 1998) implemented in the R-package coda (Plummer

et al., 2006). Values of the Gelman-Rubin (G.R.) statistic significantly different from 1 indicate that at

least one of the two posterior samples deviates significantly from the true posterior distribution. By

visual comparison of posterior density with prior desnity plots, it is possible to assess whether the data

contains information differring from the prior knowledge for a given parameter. In step 3, we capitalize

on the chance that the MCMCs have explored a wider region of the parameter space than the likelihood

optimization.

3.2 Technical correctness

To validate the correctness of the Bayesian POUMM implmentation, we used the method of posterior

quantiles (Cook et al., 2006). In this method, the idea is to generate samples from the posterior quantile

distributions of selected model parameters (or functions thereof) by means of numerous “replications”

of simulation followed by Bayesian parameter inference. In each replication, “true” values of the model

parameters are drawn from a fixed prior distribution and trait-data is simulated under the model specified

by these parameter values. We perform these simulations on a fixed tree of size N=4000. Then, the to-

be-tested software is used to produce a posterior distribution of parameters based on the simulated trait-

data. Next, the posterior quantiles of the “true” parameter values (or functions thereof) are calculated

from the corresponding posterior samples generated by the to-be-tested software. By running multiple

independent replications on a fixed prior, it is possible to generate large samples from the posterior

quantile distributions of the individual model parameters, as well as any derived quantities. Assuming

correctness of the simulations, any statistically significant deviation from uniformity of these posterior

quantile samples indicates an error in the to-be-tested software (Cook et al., 2006).

Two phylogenetic trees were used for the simulations:

• Ultrametric (BD, N=4000) - an ultrametric birth-death tree of 4000 tips generated using the TreeSim

R-package (Stadler et al., 2013; Boskova et al., 2014) (function call: sim.bd.taxa(4000, lambda =

2, mu = 1, frac = 1, complete = FALSE));

• Non-ultrametric (BD, N=4000) - a non-ultrametric birth-death tree of 4000 tips generated using the

TreeSim R-package (Stadler et al., 2013; Boskova et al., 2014) (function call: sim.bdsky.stt(4000,

lambdasky = 2, deathsky = 1, timesky=0)).

Simulation scenarios of 2000 replications were run using the prior distribution <gM ,α,θ,σ,σe>∼

N (5,25)×Exp(0.1)×U(2,8)×Exp(0.4)×Exp(1). The goal of using this prior was to explore a large
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FIG. S1. Posterior quantiles from simulations on a ultrametric and a non-ultrametric tree (N=4000). The number n at the
top of each histogram denotes the number of replications out of 2000 which reached acceptable MCMC convergence and
mixing after one million iterations. Uniformity was confirmed using a Kolmogorov-Smirnov test which was insignificant for
all parameters (P-value above 0.1).

enough subspace of the POUMM parameter space, while keeping MCMC convergence and mixing within

reasonable time (runtime up to 30 minutes for two MCMCs of 106 adaptive Metropolis iterations at

target acceptance rate of 1%). From the above prior, we drew a sample of n=2000 parameter tuples,

{Θ(1),...,Θ(n)}, which were used as replication seeds. For a given Θ(i), we simulate genotypic values

g(i)(T ,Θ(i)) according to an OU-branching process with initial value g
(i)
M and parameters α(i), θ(i), σ(i).

Then, we add random white noise (∼N (0,σ2
e
(i)

)) to the genotypic values at the tips, to obtain the final

trait values z(i).

For the two simulated trees, we executed a total of 2×2000=4000 replications. The resulting posterior

quantile distributions for the each tree are shown on Fig. S1. We notice that the posterior quantiles

for all relevant parameters are uniformly distributed. This is confirmed visually by the corresponding

histograms (Fig. S1), as well as statistically, by a non-significant p-value from a Kolmogorov-Smirnov

uniformity test at the 0.01 level. This observation validates the technical correctness of the software.

4 Supplementary results from the performance benchmarks
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FIG. S2. Likelihood calculation times for the single-trait POUMM implementation (package POUMM) on Euler cluster (a
single shared memory node with Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz running 24 physical cores). Both, the
x−axis denoting the number of cores, and the y−axis denoting the calculation time in milliseconds are on the linear scale.
Horizontally, the panels correspond to the different tree topologies, see also Fig. 2. Vertically, the panels correspond to
the different tree-sizes. For visualization purpose, only the times for the serial postorder and the fastest parallel algorithm
(parallel range-based) are shown. The times for the parallel queue-based implementation were significantly higher.
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FIG. S3. Likelihood calculation times for the multi-trait POUMM implementation (package PCMBaseCpp) with 1 trait on
Euler cluster (a single shared memory node with Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz running 24 physical cores).
Both, the x−axis denoting the number of cores, and the y−axis denoting the calculation time in milliseconds are on the linear
scale. Horizontally, the panels correspond to the different tree topologies, see also Fig. 2. Vertically, the panels correspond
to the different tree-sizes.
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FIG. S4. Likelihood calculation times for the multi-trait POUMM implementation (PCMBaseCpp) with 4 traits on Euler
cluster (a single shared memory node with Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz running 24 physical cores). Both,
the x−axis denoting the number of cores, and the y−axis denoting the calculation time in milliseconds are on the linear
scale. Horizontally, the panels correspond to the different tree topologies, see also Fig. 2. Vertically, the panels correspond
to the different tree-sizes.
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FIG. S5. Likelihood calculation times for the multi-trait POUMM implementation (PCMBaseCpp) with 8 traits on Euler
cluster (a single shared memory node with Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz running 24 physical cores). Both,
the x−axis denoting the number of cores, and the y−axis denoting the calculation time in milliseconds are on the linear
scale. Horizontally, the panels correspond to the different tree topologies, see also Fig. 2. Vertically, the panels correspond
to the different tree-sizes.
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FIG. S6. Likelihood calculation times for the multi-trait POUMM implementation (PCMBaseCpp) with 16 traits on Euler
cluster (a single shared memory node with Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz running 24 physical cores). Both,
the x−axis denoting the number of cores, and the y−axis denoting the calculation time in milliseconds are on the linear
scale. Horizontally, the panels correspond to the different tree topologies, see also Fig. 2. Vertically, the panels correspond
to the different tree-sizes.
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FIG. S7. Parallel speed-up for the multi-trait POUMM implementation (PCMBaseCpp) with 1 trait on Euler cluster. The
grey and red lines denote, the expected speed-up at 100% and 50% parallel efficiency, respectively. Horizontally, the panels
correspond to the different tree topologies. Vertically, the panels correspond to the different tree-sizes.
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FIG. S8. Parallel speed-up for the multi-trait POUMM implementation (PCMBaseCpp) with 4 traits on Euler cluster. The
grey and red lines denote, the expected speed-up at 100% and 50% parallel efficiency, respectively. Horizontally, the panels
correspond to the different tree topologies. Vertically, the panels correspond to the different tree-sizes.
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FIG. S9. Parallel speed-up for the multi-trait POUMM implementation (PCMBaseCpp) with 8 traits on Euler cluster. The
grey and red lines denote, the expected speed-up at 100% and 50% parallel efficiency, respectively. Horizontally, the panels
correspond to the different tree topologies. Vertically, the panels correspond to the different tree-sizes.
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5 Combined speed-up from parallel likelihood calculation and adaptive Metropolis sampling

We have used the POUMM package to estimate the heritability of set-point viral load in a data-set of

8,483 HIV patients. While the results of this analysis have been reported elsewhere (Mitov and Stadler,

2018), here, we briefly report the times and the quality statistics for the MCMC inference of the model

with and without adaptive Metropolis sampling.

First, we ran the classical RWM Metropolis sampler with a default identity shape matrix for two

MCMCs of ten million iterations on the above-mentioned hardware (2.3GHz Intel(R) Core i7 processor

with 4 cores), using the fastest (range-based) parallel likelihood calculation. The total time for the two

MCMCs was 3:18 hours. The run resulted in poor mixing and very low effective posterior sample size

for most of the inferred parameters of the model (Fig. S10a,b). The Gelman-Rubin statistic was greater

than 1.1 for all parameters and the effective sample size was below 400 for all parameters, falling below

50 for α and σ.

Next, we ran the adaptive Metropolis sampler for two MCMCs of one million iterations. Adaptations

has been enabled only for the first 100,000 iterations in each MCMC. The total runtime was 25 minutes.

The two chains mixed very well and the effective sample size for all parameters exceeded 1200 (Fig.

S10c,d). The difference |G.R.−1| was below 0.01 for all parameters, proving that the MCMCs have

converged to the same distribution, which is very likely the true posterior distribution for the model

parameters.
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FIG. S10. Sample trace- and density plots from a POUMM fit to a tree and virulence data 8483 HIV patients (Mitov and
Stadler, 2018) a,b: no adaptation of the proposal shape matrix (ten million iterations); c,d: on-the-fly adaptation of the
proposal shape matrix from the first 100,000 out of one million iterations. The colors correspond to the different chains.
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