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a b s t r a c t

Phylogenetic comparative methods (PCMs) have been used to study the evolution of quantitative traits
in various groups of organisms, ranging from micro-organisms to animal and plant species. A common
approach has been to assume a Gaussian phylogenetic model for the trait evolution along the tree, such
as a branching Brownian motion (BM) or an Ornstein–Uhlenbeck (OU) process. Then, the parameters
of the process have been inferred based on a given tree and trait data for the sampled species. At the
heart of this inference lie multiple calculations of the model likelihood, that is, the probability density
of the observed trait data, conditional on the model parameters and the tree. With the increasing
availability of big phylogenetic trees, spanning hundreds to several thousand sampled species, this
approach is facing a two-fold challenge. First, the assumption of a single Gaussian process governing
the entire tree is not adequate in the presence of heterogeneous evolutionary forces acting in different
parts of the tree. Second, big trees present a computational challenge, due to the time and memory
complexity of the model likelihood calculation.

Here, we explore a sub-family, denoted GLInv , of the Gaussian phylogenetic models, with the
transition density exhibiting the properties that the expectation depends Linearly on the ancestral trait
value and the variance is Invariant with respect to the ancestral value. We show that GLInv contains
the vast majority of Gaussian models currently used in PCMs, while supporting an efficient (linear in
the number of nodes) algorithm for the likelihood calculation. The algorithm supports scenarios with
missing data, as well as different types of trees, including trees with polytomies and non-ultrametric
trees. To account for the heterogeneity in the evolutionary forces, the algorithm supports models
with ‘‘shifts’’ occurring at specific points in the tree. Such shifts can include changes in some or all
parameters, as well as the type of the model, provided that the model remains within the GLInv family.
This contrasts with most of the current implementations where, due to slow likelihood calculation, the
shifts are restricted to specific parameters in a single type of model, such as the long-term selection
optima of an OU process, assuming that all of its other parameters, such as evolutionary rate and
selection strength, are global for the entire tree.

We provide an implementation of this likelihood calculation algorithm in an accompanying
R-package called PCMBase. The package has been designed as a generic library that can be integrated
with existing or novel maximum likelihood or Bayesian inference tools.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since Felsenstein’s (1985) work describing the independent
contrasts algorithm, phylogenetic comparative methods (PCMs)
have steadily been generalized with respect to available models
and implementations of them. Following Felsenstein (1988)’s
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suggestion, Hansen (1997) described the Ornstein–Uhlenbeck
(OU) process in the PCM setting. This led to the implementation
of OU models in various packages such as ouch (Butler and King,
2004) or geiger (Harmon et al., 2008) to name a few. Nowadays,
the OU process has become a standard model in the community,
alongside the Brownian motion (BM) process popularized pre-
viously by Felsenstein (1985) (but see also Edwards (1970) and
Lande (1976)). For species being characterized by multiple traits,
the multivariate OU processes were introduced by R packages
such as ouch, slouch (Hansen et al., 2008), mvSLOUCH (Bar-
toszek et al., 2012), mvMORPH (Clavel et al., 2015), Rphylopars
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(Goolsby et al., 2016), again, to name a few. At the core of these
methods, the likelihood of the model parameters and tree for
given quantitative trait data at the tips is calculated, meaning the
probability density of the tip trait values given the parameters
and tree is calculated.

At present, the mathematical frameworks for PCMs are applied
to situations that are very different from the original motivation
of a between-species analysis within a small clade. For example,
traits being gene expression levels (Bedford and Hartl, 2009;
Rohlfs et al., 2013) or epidemiological measurements (the tree
connects the epidemic’s outbursts, Pybus et al., 2012) are anal-
ysed. With large and diverse clades, such as HIV transmission
trees having thousands of tips, e.g. in Hodcroft et al. (2014),
Bertels et al. (2017) and Mitov and Stadler (2018), there is a need
to vary the parameters of the models across different clades or
epochs in the tree. Already e.g. Bartoszek et al. (2012), Butler and
King (2004) and Hansen (1997) showed the possibility of varying
the deterministic optimum of OU processes. Beaulieu et al. (2012),
Eastman et al. (2011), Clavel et al. (2015) and Manceau et al.
(2016) went further to allow all parameters of the model to
change at known ‘‘shift’’ points in the tree. The computationally
harder task of inferring the branch and time of shift points has
been addressed by Eastman et al. (2011), Ingram and Mahler
(2013), Khabbazian et al. (2016), Gill et al. (2016), Caetano and
Harmon (2017), and Bastide et al. (2018) with implementations
in AUTEUR, SURFACE, l1ou, BEAST, ratematrix, and Phylogenet-
icEM software packages, respectively.1 However, each of these
tools has specific limitations with respect to the number of traits,
the type and size of supported trees, the types of supported
models and the parameters that can undergo shifts.

A main obstacle hindering the statistical inference of multi-
variate Gaussian phylogenetic models, in the general setting of
correlated traits evolving over a (possibly big and non-
ultrametric) phylogenetic tree, with inference of the branch and
time of shifts in some or all model parameters, has been the
lack of an efficient (i.e. linear in the number of nodes) likelihood
calculation algorithm. Technically, the likelihood calculation re-
quires integrating conditional probability density functions over
unobserved values of the traits at the internal nodes. In this
article, we propose a computationally efficient general solution
to this integration problem, enabling in a longer term both, direct
maximum likelihood as well as Bayesian inference. Specifically,
we generalize Felsenstein’s pruning algorithm to a multivariate
Gaussian phylogenetic model with shifts and to any type of tree,
including non-ultrametric trees (i.e. phylogenetic trees with tips
in the past corresponding to extinct species) and polytomies
(i.e. trees with any number of branches descending from a parent
node). This algorithm enables the calculation of the log-likelihood
of such models, in time proportional to the number of nodes
in the tree. We prove that our approach applies to a large
class of models, namely the family, hereby denoted GLInv , of
all models where, conditional on the ancestral trait value, the
descendant’s trait value is normally distributed, the expectation
of this normal distribution depends linearly on the ancestral trait,
and the variance of this normal distribution does not depend
on the ancestral value. From a mathematical point of view, our
approach can be seen as an equivalent derivation of the Gaussian
moment propagation procedure introduced recently by Bastide
et al. (2018), see Discussion. More intuitively, we propose a
generalization of the analytical integration technique described
previously by Hadfield and Nakagawa (2010), FitzJohn (2012),

1 With respect to the chronological order of the works, here, we omit the R
package PCMFit (Mitov et al., 2019)—despite its earlier publication, the inference
method introduced in Mitov et al. (2019) is based on the here presented
likelihood calculation algorithm and software tool.

Freckleton (2012), Pybus et al. (2012), Lartillot (2014), Cybis et al.
(2015) and Mitov and Stadler (2019) to any type of tree and
for multivariate Gaussian models with shifts, both, in the model
parameters, as well as the type of the model, provided the new
model type belongs to the GLInv family. Pybus et al. (2012) pointed
out that for such a method to work, it is needed ‘‘to keep track of
partial’’ means and precisions. Here, we propose a very general,
computationally efficient, and developer friendly way of doing
this by recursively updating the polynomial representation of
the multivariate normal density function. In order to use our
approach for a new GLInv model, one has to define functions for
the variance of the transition along a branch, the shift in the
mean along a branch (i.e. a vector), and the linear dependency
(i.e. a matrix) on the ancestral state. Thus, in our framework,
one needs to understand only the process dynamics of a single
branch (lineage), something that is usually present at the model
formulation stage.

It is important to stress here two points about the presented
method and accompanying implementation. First, this work does
not cover non-Gaussian phylogenetic models. To the best of our
knowledge, for some non-Gaussian models, likelihood calculation
methods have been proposed by Ho and Ané (2014a), using a
3-point structure algorithm, and by Hiscott et al. (2016), us-
ing numerical integration over the internal nodes. Second, it
is beyond the scope of this work to provide a complete in-
ference framework. Rather, this work is limited to providing a
comprehensive theoretical description and a software tool for
specifying complex multivariate Gaussian models with shifts and
for efficiently calculating the likelihood of such models, given
a comparative dataset and a phylogenetic tree. A complete use
case implementing maximum likelihood inference in real and
simulated datasets is provided in a separate paper (Mitov et al.,
2019). There, building on top of the framework presented here,
we infer a mixed Gaussian phylogenetic model of brain- and
body-mass evolution in a phylogeny of 630 mammal species.
Statistical properties of the GLInv models, such as identifiability,
model uncertainty, type I and II errors, and invariance to rigid
rotations of the trait data (Adams and Collyer, 2018) are also
evaluated by Mitov et al. (2019).

The GLInv family contains the models encountered in a number
of contemporary frameworks. In particular all OU type models
(with implementations in ouch, slouch, mvSLOUCH, mvMORPH)
belong to GLInv . The RPANDA SDE framework (excluding inter-
action between lineages) is also covered as are current punc-
tuated equilibrium models (OU along a branch with a normal
jump, denoted JOU Bartoszek, 2014; Bokma, 2002). To the best of
our knowledge, our implementation provides efficient likelihood
calculation for the widest class of models, including but not
limited to BM, OU, BM with trend, drift, early burst/Accelerating–
decelerating (EB/ACDC) or white noise (Harmon et al., 2008), on
general types of phylogenetic trees.

The rest of the paper is organized as follows. In Section 2,
we define the GLInv family and describe the analytical integration
algorithm for fast likelihood calculation. In Section 3, we describe
how one can handle issues such as shifts, missing values, mea-
surement error, punctuated components, trees with polytomies,
as well as sequentially sampled data (such as fossil data) lead-
ing to non-ultrametric trees. Next, in Section 4, we discuss the
standard OU setup and describe examples of GLInv model types
that have already been implemented in our framework. Two
widely used models – the multivariate BM and OU processes
and a novel model – a multivariate OU model with jumps are
provided. Further, in Section 5, we discuss our method in the light
of current approaches. In Appendix A we describe our software
implementation—the PCMBase R-package. In Appendix B, we use
code examples and output from the PCMBase package to provide
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Fig. 1. A phylogenetic tree with observations at the tips. Numbered labels in black indicate the tips with observed trait vectors x⃗1, . . . , x⃗N=5 . Missing measurements
are denoted as NA (Not Available), while non-existing traits are denoted as NaN (Not a Number). Numbered labels in red indicate the root, 0, and the internal nodes
6, . . . , 9, for which the trait vectors are unknown. The vectors, k⃗i , denote the active coordinates for every node—for a tip-node these are all coordinates with a trait
measurement (neither NA nor NaN); for an internal node, these are all the coordinates denoting traits that exist (are not NaN) for at least one of the tips descending
from that node. The length of a branch leading to a tip or an internal node is known and denoted by ti , i = 1, . . . , 9. The change in branch colour from black
to orange at the beginning of the branch leading to node 6 denotes the shift to a different evolutionary regime. This can be a change in the values of the model
parameters, or a change to a new type of model within the GLInv family.

a step-by-step example of the log-likelihood calculation on a
small tree. In Appendix C, we report a technical validation test
of the implementation. In Appendix D, we report a performance
benchmark evaluating the likelihood calculation time for different
numbers of traits, tree sizes and GLInv model types.

2. Fast phylogenetic computational framework

2.1. Phylogenetic notation

We assume that we are given a rooted phylogenetic tree T
representing the ancestral relationship between N species asso-
ciated with the tips of the tree (Fig. 1). We denote the tips of the
tree by the numbers 1, . . . ,N , the internal nodes by the numbers
N + 1, . . . ,M − 1 (where M is the total number of nodes in the
tree) and the root-node by 0. For any internal node j, we denote
by Desc(j) the set of its direct descendants. We denote by tj the
known length of the branch in the tree leading to any tip or
internal node j. By convention, we assume that time increases
in the direction from the root to the tips of the tree, and tj are
positive scalars.

The object of all phylogenetic models discussed here will be
a suite of k quantitative (real-valued) traits characterizing the N
species. Associated with each tip, i, there is a real k-vector, x⃗i,
of measured values for the k traits. For some species, some trait
measurements can be missing, reflecting two possible cases:

• the trait exists but was not measured for that species, de-
noted as NA (Not Available);

• the trait does not exist for that species denoted as NaN (Not
a Number) (Fig. 1).

We introduce algebraic notation that will hold for the rest of
the paper. Scalars are denoted by lower case letters, e.g. f , vectors
are indicated by the arrow notation, e.g. θ⃗ , while matrices are
denoted as upper case bold letters, e.g. H. An exception to this
is Xj, meaning the set of measurements at the tips descending
from an internal node j of the tree.

Fig. 2. Simulation of a bivariate OU process on top of a pure birth tree with 30
tips. The two traits are displayed on separate panels. The tree was simulated
using the TreeSim package (Stadler, 2009, 2011), its height is 3.201. The bivariate
OU process was simulated using mvSLOUCH (Bartoszek et al., 2012) with pa-
rameters (matrices are represented by their rows) H = {{1, 0.25}, {0, 2}}, Σx =

{{0.5, 0.25}, {0, 0.5}}, θ⃗ = (1, −1)T and x⃗0 = (0, 0)T (see Section 4.1 for the
definition of these parameters).

2.2. Phylogenetic models of continuous trait evolution

We assume that the trait values measured at the tips of
the tree are a realization of a continuous-time-continuous-state
Markovian process evolving on top of the branching pattern in
the tree. By this we mean that along any given branch we have a
trajectory following the law of the process. Then, at speciation,
the process ‘‘splits’’ into two processes. Both processes inherit
the last value of their parent process. After the branching points,
there is no interaction between the processes. This entails that
all the dependencies between the values at the tips come from
the time between the origin of the tree and the most recent
common ancestor for each pair of species. Exactly how this shared
time of evolution is translated into a dependency depends on the
assumed process. A widely used example of such trait process is
the Ornstein–Uhlenbeck process illustrated in Fig. 2.

Such stochastic processes are used as models of continuous
trait evolution at the macro-evolutionary time scale, that is, when
the time-units are in the order of hundreds to thousands of gen-
erations. Further in the text, we use the term ‘‘(trait evolutionary)
model’’ to denote such kind of stochastic processes. We now turn
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to describing a family of models for which we will then provide
an efficient way to calculate the likelihood of their parameters
given the tree and the trait data observed at its tips.

2.3. The GLInv family of models

The following definition specifies all requirements needed for
a trait evolutionary model to be integrated within the fast com-
putational framework:

Definition 1 (The GLInv Family). We say that a trait evolutionary
model with parameters Θ⃗ belongs to the GLInv family if it satisfies
the following

1. after branching, the traits evolve independently in all de-
scending lineages;

2. the distribution of the trait vector at time t , x⃗(t) ∈ Rkt ,
conditional on a trait vector at time s < t , x⃗(s) ∈ Rks and,
possibly, some other variables denoted by η⃗, is Gaussian
with the mean and variance satisfying

(2.a) E
[
x⃗(t)|x⃗(s)

]
= ω⃗(s, t, Θ⃗, η⃗) + Φ(s, t, Θ⃗, η⃗)x⃗(s)

(the expectation is a linear function of the ancestral
value),

(2.b) Var
[
x⃗(t)|x⃗(s)

]
= V(s, t, Θ⃗, η⃗)

(variance is invariant with respect to the ancestral
value),

for some positive but not necessarily equal dimensions kt
and ks, a vector ω⃗(s, t, Θ⃗, η⃗) ∈ Rkt , a matrix Φ(s, t, Θ⃗, η⃗) ∈

Rkt×ks , and a symmetric positive definite matrix
V(s, t, Θ⃗, η⃗) ∈ Rkt×kt , all of which may depend on s, t , Θ⃗

and η⃗ but do not depend on the trait trajectory x⃗(·).

For simplicity, further in the text, we will write ω⃗, Φ and V
remembering that they are functions of s, t , Θ⃗ , and, possibly,
other variables η⃗ (e.g. a branch location in a phylogenetic tree).

Later, in Section 4, we show that the GLInv family contains
many well-known contemporary models such as BM, multivariate
OU, BM or OU with normally distributed jumps. Now we derive
an important property of the GLInv family playing a key role for
the fast likelihood calculation:

Theorem 1. Let M be a trait model from the GLInv family. Let i be
a tip or internal node and j be its parent node in a tree T, and let
x⃗i ∈ Rki , x⃗j ∈ Rkj (ki, kj ∈ Z+) be the trait-vectors at the nodes i and
j under a realization of M on T. Let ω⃗i, Φi and Vi denote the terms ω⃗,
Φ and V from Definition 1 specific for node i. Then, the probability
density function (pdf) of x⃗i conditioned on x⃗j can be expressed as the
following exponential of a quadratic polynomial

pdf (x⃗i|x⃗j) = exp
[
x⃗Ti Aix⃗i + x⃗Ti b⃗i + x⃗Tj Cix⃗j + x⃗Tj d⃗i + x⃗Tj Eix⃗i + fi

]
, (1)

where Ai is a symmetric negative-definite matrix, and all of the terms
Ai, b⃗i, Ci, d⃗i, Ei, fi are constants with respect to x⃗j, specified by the
equations:

Ai = −
1
2V

−1
i ∈ Rki×ki

b⃗i = V−1
i ω⃗i ∈ Rki

Ci = −
1
2Φ

T
i V

−1
i Φi ∈ Rkj×kj

d⃗i = −ΦT
i V

−1
i ω⃗i ∈ Rkj

Ei = ΦT
i V

−1
i ∈ Rkj×ki

fi = −
1
2 ω⃗

T
i V

−1
i ω⃗i −

ki
2 log (2π) −

1
2 log |Vi| ∈ R.

(2)

Proof. Substituting ω⃗i + Φix⃗j and Vi for the mean and variance
in the formula for the pdf of a multivariate Gaussian distribution,
we obtain:

pdf (x⃗i|x⃗j) = exp
[

−
1
2

(
x⃗i −

(
ω⃗i + Φix⃗j

))T V−1
i

(
x⃗i −

(
ω⃗i + Φix⃗j

))
−

ki
2

log (2π) −
1
2
log |Vi|

]
(3)

By expanding and reordering the terms in parentheses, Eq. (3) can
be rewritten as

pdf (x⃗i|x⃗j) = exp
[

x⃗Ti
(
−

1
2V

−1
i

)
x⃗i+

x⃗Ti
(
V−1
i ω⃗i

)
+

x⃗Tj
(
−

1
2Φ

T
i V

−1
i Φi

)
x⃗j+

x⃗Tj
(
−ΦT

i V
−1
i ω⃗i

)
+

x⃗Tj
(
ΦT

i V
−1
i

)
x⃗i+(

−
1
2 ω⃗

T
i V

−1
i ω⃗i −

ki
2 log (2π)

−
1
2 log |Vi|

)]
.

(4)

We can see the correspondence with the quadratic forms
x⃗Ti (. . .)x⃗i, x⃗

T
j (. . .)x⃗j and the other terms in Eq. (1). Eq. (2) follows

immediately. Furthermore, Ai is a symmetric negative-definite
matrix, because Vi is a symmetric positive-definite matrix as it
is a variance–covariance matrix. Finally, all of the terms Ai,
b⃗i, Ci, d⃗i, Ei, fi are constant with respect to x⃗j, because they are
functions of ω⃗i, Φi and Vi which are constants with respect to x⃗j
by Definition 1. □

2.4. Calculating the likelihood of GLInv models

Let M be a trait evolutionary model realized on a tree T and Θ⃗

denotes the parameters of M. The likelihood of M for given trait
data X associated with the tips of T is defined as the function

ℓ(Θ⃗) = pdf (X|T, Θ⃗) =

∫
Ω(Z)

pdf (Z,X|T, Θ⃗)dZ, (5)

where Z denotes the unobserved trait values at the internal nodes
of the tree (excluding the root2) and Ω(Z) denotes the space of
possible values of Z.

The representation of Eq. (1) allows for linear (in terms of the
number of nodes, M) calculation of the likelihood of any trait
model in the GLInv family, given a phylogeny and measured data
at its tips. This follows from the next theorem.

Theorem 2. Let M be a trait evolutionary model from the GLInv
family and T be a phylogenetic tree. Let Θ⃗ be the parameters of M.
For the root (0) or any internal node j in T, there exists a kj × kj
matrix Lj, a kj-vector m⃗j and a scalar rj, such that the likelihood of
M for the data Xj, conditioned on x⃗j ∈ Rkj and T is expressed as:

pdf (Xj|x⃗j,T, Θ⃗) = exp
(
x⃗Tj Ljx⃗j + x⃗Tj m⃗j + rj

)
. (6)

The parameters Lj, m⃗j, rj are functions of Θ⃗ , the observed data Xj,
and the tree T, namely, Eqs. (9), (10), and (11).

Proof. Following Condition 1 of Definition 1 we can factorize
the conditional likelihood at any internal or root node j. Splitting
Desc(j), i.e. the set of nodes descending from node j, into tips and

2 The treatment of the trait value at the root is discussed later in the text.
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non-tips, denoted as Desc(j)∩ {1, . . . ,N} and Desc(j) \ {1, . . . ,N},
we can write:

pdf (Xj|x⃗j,T, Θ⃗) =

( ∏
i∈Desc(j)∩{1,...,N}

pdf (x⃗i|x⃗j,T, Θ⃗)

)
×( ∏

i∈Desc(j)\{1,...,N}

∫
Rk
i

pdf (x⃗i|x⃗j,T, Θ⃗)

× pdf (Xi|x⃗i,T, Θ⃗)dx⃗i

)
.

(7)

We first prove the theorem for nodes where all descendants
are tips. If all descendants of j are tips (e.g. j ∈ 6, 7, Fig. 1), then,
according to Eq. (1)

pdf (Xj|x⃗j,T, Θ⃗) =

∏
i∈Desc(j)

pdf (x⃗i|x⃗j,T, Θ⃗)

= exp

⎛⎝ ∑
i∈Desc(j)

x⃗Ti Aix⃗i + x⃗Ti b⃗i + x⃗Tj Cix⃗j

+x⃗Tj d⃗i + x⃗Tj Eix⃗i + fi

⎞⎠ ,

resulting in

pdf (Xj|x⃗j,T, Θ⃗) = exp

⎛⎝x⃗Tj (
∑

i∈Desc(j)

Ci)x⃗j + x⃗Tj (
∑

i∈Desc(j)

d⃗i + Eix⃗i)

+

∑
i∈Desc(j)

x⃗Ti Aix⃗i + x⃗Ti b⃗i + fi

⎞⎠ (8)

Then, to obtain the representation from Eq. (6), we denote:

Lj =

∑
i∈Desc(j)

Ci

m⃗j =

∑
i∈Desc(j)

d⃗i + Eix⃗i

rj =

∑
i∈Desc(j)

x⃗Ti Aix⃗i + x⃗Ti b⃗i + fi

(9)

If not all of Desc(j) are tips, then, for the descendants which are
tips, we define:

Ltipsj =

∑
i∈Desc(j)∩{1,...,N}

Ci

m⃗tips
j =

∑
i∈Desc(j)∩{1,...,N}

d⃗i + Eix⃗i

r tipsj =

∑
i∈Desc(j)∩{1,...,N}

x⃗Ti Aix⃗i + x⃗Ti b⃗i + fi

(10)

We perform mathematical induction to prove the theorem for
all nodes. We need to show that Eq. (6) holds for each non-
tip descendant of j, that is, for each i ∈ Desc(j) \ {1, . . . ,N}

there exist a ki × ki matrix Li, a ki-vector m⃗i and a scalar ri
such that pdf (Xi|x⃗i,T, Θ⃗) = exp(x⃗Ti Lix⃗i + x⃗Ti m⃗i + ri). We proved
the induction base case, namely, we proved above that Eq. (6)
holds for all nodes which have only tip-descendants. Then, the
induction hypothesis is that for an internal node j, the statement
of the theorem has been proven for all i ∈ Desc(j). Now in the
inductive step using Eq. (1) and the induction hypothesis, we can

write the integral in Eq. (7) as∫
Rki pdf (x⃗i|x⃗j,T, Θ⃗) × pdf (Xi|x⃗i,T, Θ⃗)dx⃗i

=
∫
Rki exp

(
x⃗Ti Aix⃗i + x⃗Ti b⃗i + x⃗Tj Cix⃗j + x⃗Tj d⃗i + x⃗Tj Eix⃗i + fi

+x⃗Ti Lix⃗i + x⃗Ti m⃗i + ri
)
dx⃗i

= exp
(
x⃗Tj Cix⃗j + x⃗Tj d⃗i + fi + ri

)
×
∫
Rki exp

(
x⃗Ti (Ai + Li)x⃗i

+x⃗Ti (b⃗i + m⃗i + ET
i x⃗j)

)
dx⃗i

= exp
(
x⃗Tj Cix⃗j + x⃗Tj d⃗i + fi + ri

)(√
2π
)ki

×
(√

|(−2) (Ai + Li) |
)−1

× exp
(

−(1/4)
(
b⃗i + m⃗i + ET

i x⃗j
)T

(Ai + Li)−1

×

(
b⃗i + m⃗i + ET

i x⃗j
))

= exp
(
x⃗Tj Cix⃗j + x⃗Tj d⃗i + fi + ri

)(√
2π
)ki

×
(√

|(−2) (Ai + Li) |
)−1

× exp
(

−(1/4)
(
b⃗i + m⃗i

)T
(Ai + Li)−1

(
b⃗i + m⃗i

)
−(1/2)x⃗Tj Ei (Ai + Li)−1

(
b⃗i + m⃗i

)
−(1/4)x⃗Tj Ei (Ai + Li)−1 ET

i x⃗j

)
= exp

(
x⃗Tj
(
Ci − (1/4)Ei (Ai + Li)−1 ET

i

)
x⃗j

+x⃗Tj
(
d⃗i − (1/2)Ei (Ai + Li)−1

(
b⃗i + m⃗i

))
+fi + ri + (ki/2) log(2π ) − (1/2) log(|(−2) (Ai + Li) |)

−(1/4)
(
b⃗i + m⃗i

)T
(Ai + Li)−1

(
b⃗i + m⃗i

) )
.

We can then see that for a non-tip node we can define

Lnon−tips
j =

∑
i∈Desc(j)\{1,...,N}

(
Ci − (1/4)Ei (Ai + Li)−1 ET

i

)
m⃗non−tips

j =

∑
i∈Desc(j)\{1,...,N}

(
d⃗i − (1/2)Ei (Ai + Li)−1

(
b⃗i + m⃗i

))
rnon−tips
j =

∑
i∈Desc(j)\{1,...,N}

(
fi + ri + (ki/2) log(2π )

−(1/2) log(|(−2) (Ai + Li) |)

−(1/4)
(
b⃗i + m⃗i

)T
(Ai + Li)−1

×

(
b⃗i + m⃗i

) )
.

(11)

The representation of Lnon−tips
j , m⃗non−tips

j and rnon−tips
j in Eq. (11)

immediately implies the existence of the Lj, m⃗j and rj elements in
Eq. (6) for internal or root nodes j, hence we obtain the claimed
polynomial form in the inductive step and in consequence the
theorem. □

The inductive proof of Theorem 2 defines a pruning-wise
procedure for calculating L0, m⃗0 and r0 (we remind that 0 stands
for the root of the tree). In order to calculate the likelihood of
the tree conditioned on x⃗0, we use Theorem 2 with j being the
root node. In order to be able to calculate the full likelihood, it
now only remains to specify how to deal with the unknown trait
value at the root of the tree, x⃗0, i.e. the ancestral state. This is
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an implementation detail up to the user. Similar to Ho and Ané
(2014b), our implementation provided in the PCMbase package
(Appendix A) allows for maximizing the polynomial with respect
to x⃗0 or for treating it as a free parameter (like the elements of
the parameter set Θ⃗) that the user provides. A detailed example
of the pruning likelihood calculation is provided in Appendix B.

2.5. Scope of the framework

We now investigate if there are other trait evolutionary mod-
els, beyond the GLInv family, for which the likelihood can be
calculated using the same recursive formulae, Eqs. (9), (10), and
(11). First, since we calculate the likelihood in a recursive prun-
ing fashion, we assume that evolution is independent across
branches, meaning Condition 1 is a necessary condition. In The-
orem 3, we prove that Condition 2 in Definition 1 is also a
necessary condition. In other words, we show that if the likeli-
hood can be calculated via recursion based on Eqs. (2), (8), then
the model is in the GLInv family.

Theorem 3. Let M be a trait model satisfying Condition 1 of
Definition 1 and realized on a tree T. If for every parent–child pair
of nodes ⟨j, i⟩ in T, the trait-vector x⃗i ∈ Rki (ki ∈ Z+) has non-zero
support on the whole of Rki and there exist a symmetric negative-
definite matrix Ai ∈ Rki×ki and components b⃗i ∈ Rki , Ci ∈ Rkj×kj ,
d⃗i ∈ Rkj , Ei ∈ Rkj×ki , fi ∈ R, such that, for any vector of values at
the parent node, x⃗j ∈ Rkj (kj ∈ Z+), the pdf of x⃗i conditional on
x⃗j can be expressed by Eq. (1), then M belongs to the GLInv family
and the terms ω⃗i, Φi and Vi denoting the terms ω⃗, Φ and V from
Definition 1 specific for node i satisfy Eq. (2).

Proof. We rearrange the terms on the right-hand side of Eq. (1)
as follows

pdf (x⃗i|x⃗j) = exp
[
x⃗Ti Aix⃗i − 2x⃗Ti Ai

(
(− 1

2A
−1
i )

(
b⃗i + ET

i x⃗j
))

+

(
x⃗Tj Cix⃗j + x⃗Tj d⃗i + fi

) ]
= exp

[ (
x⃗i + 1

2A
−1
i

(
b⃗i + ET

i x⃗j
))T

Ai

(
x⃗i + 1

2A
−1
i

(
b⃗i + ET

i x⃗j
))

−
1
4

(
b⃗i + ET

i x⃗j
)T

A−1
i

(
b⃗i + ET

i x⃗j
)

+

(
x⃗Tj Cix⃗j + x⃗Tj d⃗i + fi

) ]
.

(12)

As the above is by definition a density on Rki , integrating over x⃗i
equals 1. Hence, after taking all constants with respect to x⃗i out of
the integral and multiplying/dividing the integral by the constant
(
√

|2π (−2)Ai|)−1, we obtain Eq. (13) given in Box I:
When calculating the integral in Eq. (13), we have used the fact

that the matrix (−2)Ai is a symmetric positive-definite matrix as
it is the negative of the symmetric negative-definite matrix 2Ai.
Hence, the so constructed function below the integral in Eq. (13)
is a ki-variate Gaussian pdf with mean vector −

1
2A

−1
i

(
b⃗i + ET

i x⃗j
)

and variance–covariance matrix (−2)Ai.
By definition, Ai, b⃗i, Ci, d⃗i, Ei, fi are constant with respect to

x⃗j. Therefore, Eq. (13) has to hold for all x⃗j. This implies the
relationships:

Ci = EiA−T
i ET

i ,

d⃗i = 2EiA−1
i b⃗i,

fi =
1
4b

T
i A

−1
i bi −

ki
2 log(2π ) −

1
2 log

(
|(−2)Ai|

)
.

(14)

Next, we define Vi := (− 1
2 )A

−1
i , ω⃗i := (− 1

2 )A
−1
i b⃗i and Φi :=

(− 1
2 )A

−1
i ET

i . Since Ai is symmetric negative-definite, Vi is sym-
metric positive-definite. Combining the above three definitions
with Eq. (14) and expressing Ai, b⃗i, Ci, d⃗i, Ei, fi in terms of ω⃗i,
Φi and Vi, we obtain again Eq. (2). Then, we can follow the
equivalences in backward direction (Eqs. (2)→(4)→(3)) to prove
that the pdf defined in Eq. (1) is equivalent to the Gaussian pdf
defined in terms of ω⃗i, Φi and Vi, Eq. (3). We note also that ω⃗i,
Φi and Vi defined above are constant with respect to x⃗j, because
they are defined in terms of Ai, b⃗i and Ei, which are constant with
respect to x⃗j by definition. With that we proved Condition 2 of
Definition 1. Since M satisfies Condition 1 of Definition 1 by the
first sentence in the theorem, it follows that M belongs to the
GLInv family. □

Remark 1. In Eq. (1), it suffices to consider symmetric negative-
definite matrices A only. We remind that, by definition, a matrix
A is negative-definite iff x⃗TAx⃗ < 0 for every x⃗ ̸= 0⃗. Considering
non-symmetric negative-definite matrices A does not extend the
family of pdfs represented by Eq. (1). In particular, for any square
negative-definite matrix Q, and (of appropriate size) vector u⃗,
it holds that u⃗TQu⃗ = u⃗T

[ 1
2 (Q + QT )

]
u⃗ and the matrix

[ 1
2 (Q +

QT )
]
is symmetric negative-definite. Hence if one took in Eq. (1)

a non-symmetric A, then the value of the pdf would be the
same as if one had taken the symmetric negative-definite matrix[ 1
2 (A + AT )

]
.

Based on the above theorem and remark, we conclude that the
GLInv family is identical with the scope of the fast likelihood com-
putation framework. This implies that to define any new model
within the framework, it is sufficient to define the functions ω⃗, Φ
and V for each branch in the tree.

3. Special features of the framework

3.1. Shifts in the values of model parameters and the type of model

Given that the framework is abstract with respect to the func-
tions ω⃗, Φ and V, as long as the conditions of Definition 1 are met,
it is possible to change the rule for calculating these functions at
any internal node in the tree. This allows a change of all model
parameters involved in the calculation of ω⃗, Φ and V, as well
as a switch to a different type of model, without compromising
the computational efficiency. Such level of flexibility has proven
necessary in previous works, e.g. Slater (2013) and Clavel et al.
(2015). Slater (2013) used the geiger R-package to measure the
statistical support for a shift from an OU to a BM process in
the evolution of mammal body size occurring at the end of the
Mesozoic. Later, though, in Slater (2014), he realized that the
results of this study were compromised by an erroneous trans-
formation of the branch lengths in the tree that causes inaccurate
likelihood values for non-ultrametric trees. Clavel et al. (2015)
implemented a non-pruning algorithm for multivariate likeli-
hood calculation for shifts between BM, OU and the early burst
(EB) model of adaptive radiation in their R-package mvMORPH.
Due to a slow (quadratic in the number of tips) likelihood cal-
culation algorithm, though, this implementation does not scale
with tree size, while only big trees have the amount of data
necessary to identify such shifts in the mode of evolution. Our
approach should allow inferring such models with shifts on big
trees exceeding several hundred to thousand species, see e.g.
Mitov et al. (2019).



Please cite this article as: V. Mitov, K. Bartoszek, G. Asimomitis et al., Fast likelihood calculation for multivariate Gaussian phylogenetic models with shifts. Theoretical
Population Biology (2019), https://doi.org/10.1016/j.tpb.2019.11.005.

V. Mitov, K. Bartoszek, G. Asimomitis et al. / Theoretical Population Biology xxx (xxxx) xxx 7

1 =

∫
Rki

1
√

|2π (−2)Ai|
exp

[
−

1
2

(
x⃗i +

1
2
A−1
i

(
b⃗i + ET

i x⃗j
))T

(−2Ai)

(
x⃗i +

1
2
A−1
i

(
b⃗i + ET

i x⃗j
))]

dx⃗i

  
=1

×
√

|2π (−2)Ai| × exp
[

−
1
4

(
b⃗i + ET

i x⃗j
)T

A−1
i

(
b⃗i + ET

i x⃗j
)

+

(
x⃗Tj Cix⃗j + x⃗Tj d⃗i + fi

)]
= exp

[
ki
2 log(2π ) +

1
2 log|(−2)Ai|

]
× exp

[
−

1
4

(
b⃗i + ET

i x⃗j
)T

A−1
i

(
b⃗i + ET

i x⃗j
)

+

(
x⃗Tj Cix⃗j + x⃗Tj d⃗i + fi

)]
= exp

[
x⃗Tj
(
Ci −

1
4EiA−1

i ET
i

)
x⃗j + x⃗Tj

(
d⃗i − 1

2EiA−1
i b⃗i

)
+ fi +

ki
2 log(2π ) +

1
2 log

(
|(−2)Ai|

)
−

1
4 b⃗

T
i A

−1
i b⃗i

]
.

(13)

Box I.

3.2. Missing measurements and non-existing traits

The trait measurement data are the observations at the tips.
If a tip is described by a suite of traits it can easily happen that
some of them are missing, either due to missing measurement
or because the corresponding trait does not exist for the species.
Removing such a tip from any further analysis would be wasting
data, i.e. the observed data for the tip. When a trait is known
to exist for all nodes but has not been measured for some tip,
it is practical to assume that this is a random value with a
distribution defined by the general rule of the model for this tip.
In this case, the likelihood function is the marginal probability
density function of the observed trait measurements. A different
situation arises when a trait is known to have not existed for
some of the ancestral nodes in the tree—such absence reduces
the dimensionality of the space of unobserved trait values at the
internal nodes over which the integral in the definition of the
likelihood function is calculated, see Eq. (5). In the example like-
lihood calculation in Appendix B, we show that the assumption
of trait existence or non-existence at the internal nodes leads to
difference in the likelihood values. Unlike other implementations
where existence is being assumed for all traits at all ancestral
nodes (see e.g. Bastide et al. (2018)), our computational frame-
work keeps track of the case of non-existing traits by carefully
accounting for the dimensionality of the trait vectors at the tips
and the internal nodes (see Fig. 1 and Appendix B for examples).

We now turn to describing the technicalities of the mechanism
taking care of the missing measurements and/or non-existing
traits. We use a vector of positive integers, k⃗j, to denote the
ordered set of active coordinates for a node j. If j is a tip, then k⃗j
gives the indices of all non-missing entries in the trait vector for
j; for an internal (unmeasured) node this gives the possibility to
make some trait inactive. The cardinality of a vector is denoted
with |k⃗|. For a vector, the notation θ⃗ [k⃗] means the vector of
elements of θ⃗ on the coordinates contained in k⃗, while for a
matrix H[k⃗1, k⃗2] means the matrix H with only the rows on the
coordinates contained in k⃗1 and columns contained in k⃗2. For
example take θ⃗ = (10, 11, 12, 13) and k⃗ = (1, 3), then θ⃗ [k⃗] =

(10, 12), while if k⃗1 = (1, 3), k⃗2 = (2, 4) and

H =

⎡⎢⎣10 11 12 13
14 15 16 17
18 19 20 21
22 23 24 25

⎤⎥⎦ ,

then

H[k⃗1, k⃗2] =

[
11 13
19 21

]
.

If a vector or matrix does not have any indication on which
entries it is retained, then it means that we use the whole vector
or matrix. All of the above notation is graphically represented in
Fig. 1.

In our framework, we have the representation that x⃗i ∈ Rki

conditional on x⃗j ∈ Rkj is N (ω⃗i + Φix⃗j,Vi) distributed. The input
data is passed as a matrix (rows—trait measurements, columns—
different species) the missing measurements have to be indicated
as NAs, whereas the non-existing traits have to be indicated
as NaNs (Fig. 1). By default, PCMBase constructs the coordinate
vectors k⃗i and k⃗j in the following way: for a tip-node, i, k⃗i contains
all observed (neither NA nor NaN) coordinates; for an internal
node, i or j, the corresponding coordinate vector (k⃗i or k⃗j) contains
the coordinates denoting traits that exist (are not NaN) for at least
one of the tips descending from that node (Fig. 1). Biologically,
this treatment reflects a scenario where all of the traits with
at least one non-NaN entry for at least one species (i.e. tip) in
the tree must have existed for the root but some of the traits
have subsequently disappeared on some lineages of the tree. In
particular, if a trait exists for a given tip in the tree, it is assumed
that it has existed for all of its ancestors up to the root of the
tree. Conversely, if the trait does not exist for a tip, then it has
not existed for any of its ancestors up to the first ancestor shared
with a tip for which the trait does exist. Different biological
scenarios are possible, e.g. assuming that some of the traits did
not exist at the root-node but have appeared later for some on
the lineages. These can be implemented by accordingly specifying
the coordinate vectors (see Appendix B for an example).

During likelihood calculation for given trait data, a tree and a
trait evolutionary model, the elements ω⃗i, Φi and Vi of appropri-
ate dimension are calculated for each non-root node i in the tree.
This is done in two steps:

1. The general rule of the model is used to calculate the
elements ˜⃗ωi, Φ̃i, Ṽi of full dimensionality (k), i.e. assuming
that all traits exist;

2. Denoting by j the parent node of i, the elements ω⃗i, Φi and
Vi specific for the data in question are obtained as:

ω⃗i = ˜⃗ωi[k⃗i],

Φi = Φ̃i[k⃗i, k⃗j],

Vi = Ṽi[k⃗i, k⃗i],

(15)

where k⃗i and k⃗j denote the corresponding coordinate vec-
tors at nodes i and j.
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3.3. Measurement error

Commonly in PCMs the observed values at the tips are av-
erages from a number of individuals of each species. Using just
these average values does not take into account the intra-species
variability. Ignoring this can have profound effects on any further
estimation (see Hansen and Bartoszek, 2012). Following the PCM
tradition, we call this intra-species variability a measurement er-
ror, but one should remember that it can be due to true biological
variability. Technically, it is straightforward to take into account
this variability in the calculation of the likelihood function. One
recognizes, which component of the quadratic polynomial rep-
resentation corresponds to the variance of the tip and augments
it by the measurement error variance matrix, see the formulae
in Section 4. In practice, though, dealing with the measurement
error can be tricky, because it is often partially or completely
unknown. PCMBase provides a flexible interface to accommodate
such scenarios:

• Known measurement error. If for each tip i, x⃗i has been
estimated as the mean k-vector of a known sample of in-
dependent and identically distributed (i.i.d.) k-variate mea-
surements, the k×k variance covariance matrix of this mean
vector is estimated by the formula

Verr,i = Vemp,i/ni, (16)

where Vemp,i denotes the k× k empirical (sample) variance–
covariance matrix from the sample, and ni denotes the
number of individuals in the sample (but see also Hansen
and Bartoszek (2012), Garamszegi (2014) and Cooper et al.
(2015), and Appendix H in Mitov et al. (2019) for longer
discussions on measurement error in PCMs). The functions
PCMLik() and PCMSim() accept a k × k × N array param-
eter SE, where the block SE[,,i] is an upper triangular
matrix factor of Verr,i (following by convention Eq. S5, Sec-
tion Appendix A.3.1). Often, in particular, when the mean
estimates for the individual traits originate from different
samples within the same species, calculating Verr,i is not
possible. In such cases, it is practical to assume that the mea-
surement errors for each trait are uncorrelated, that is Verr,i
is diagonal, and to calculate diag(Verr,i) = diag(Vemp,i)/n⃗i,
where n⃗i is the k-vector of the sample sizes for each trait
for the given species. To facilitate this use case, PCMBase
allows the argument SE to be specified as a k × N matrix,
where each column SE[,i] corresponds to

√
diag(Verr,i).

• Unknown measurement error. If there is no way to es-
timate the measurement error empirically, e.g. when the
individual measurements and sample sizes have been lost,
PCMBase allows to include the measurement error as a
free parameter called Σe. Σe can be specified as a global
parameter shared by all regimes in the model, or as a lo-
cal (regime specific) parameter. At the level of a PCMBase
model object, this parameter is stored in the form of a
global or regime-specific upper triangular matrix parameter
Sigmae_x denoting Σe’s upper triangular factor (following
by convention Eq. S4, Section Appendix A.3.1).

3.4. Non-ultrametric trees and multifurcations

If one has only measurements from contemporary species,
then the phylogeny with branch lengths representing time is
assumed to be an ultrametric one. However, very often the phy-
logeny is not ultrametric, e.g. when branch lengths represent
genetic distances, or when extinct species are included. Given
the fact that the quadratic polynomial framework treats each
branch separately, it does not matter whether the tree is or is

not ultrametric. Therefore, there is no need to search for an
appropriate branch-length transformation as in other pruning
implementations, such as the 3-point structure algorithm (Ho and
Ané, 2014a) (see Section 5). This we believe should make the
framework very straightforward to use. Furthermore, from the
proof of Theorem 2 it is obvious that the tree does not need to be
binary. Therefore, multifurcations are naturally supported by the
framework.

3.5. Punctuated equilibrium

It is an ongoing debate in evolutionary biology at what time
does evolutionary change take place. Change may take place
either at times of speciation (punctuated equilibrium Eldredge
and Gould, 1972; Gould and Eldredge, 1993) or gradually accumu-
late (phyletic gradualism, see references in Eldredge and Gould,
1972). There seems to be evidence for both types of evolution. For
example, Bokma (2002) discusses that punctuated equilibrium
is supported by fossil records (see Eldredge and Gould, 1972)
but on the other hand Stebbins and Ayala (1981) also indicate
experiments supporting phyletic gradualism.

At an internal node in the tree something happens that drives
species apart and then ‘‘The further removed in time a species
from the original speciation event that originated it, the more its
genotype will have become stabilized and the more it is likely
to resist change.’’ (Mayr, 1982). Between branching events (and
jumps) we can have stasis—‘‘fluctuations of little or no accu-
mulated consequence’’ taking place (Gould and Eldredge, 1993).
Therefore, one would want processes that incorporate both types
of evolution and allow for testing if either of them dominates.

Any GLInv model of evolution can be extended to have a punc-
tuated component by including jumps. Jump mechanisms, like
jumps at the start of specific lineages or common jumps for
daughter lineages, have to be developed on a per model basis,
see Section 4.2 for an example. Within the PCMBase package,
this feature is implemented through a binary vector edge.jump
attached to the tree object (an augmented phylo object from
the ape R-package). The length of this vector equals the number
of edges in the tree. A 0 entry in this vector indicates that
no jump took place at beginning of the corresponding branch,
while a 1 entry that it did. While this reduces the locations
of possible jumps to the branch-starts in the tree, PCMBase
provides functions for inserting singleton nodes at user spec-
ified branches (function PCMTreeInsertSingletons()) or at
all branches intersecting with a user specified time (function
PCMTreeInsertSingletonsAtEpoch()).

4. Common GLInv models

4.1. The multivariate Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process (hereby abbreviated OU) is
the workhorse in most contemporary PCMs. Since its introduction
by Hansen (1997) it has been considered in detail with multiple
software implementations (e.g. Butler and King, 2004; Hansen
et al., 2008; FitzJohn, 2010; Bartoszek et al., 2012; Beaulieu et al.,
2012; Ho and Ané, 2014a; Clavel et al., 2015; Goolsby et al., 2016;
Mitov and Stadler, 2019).

In the most general form, the multivariate OU process de-
scribes the evolution of a k-dimensional suite of traits x⃗ ∈ Rk over
a period of time by the following stochastic differential equation

dx⃗(t) = −H
(
x⃗(t) − θ⃗ (t)

)
dt + ΣxdW⃗ (t), (17)

H ∈ Rk×k, θ⃗ (t) ∈ Rk and Σx ∈ Rk×k. Notice that when H = 0, we
obtain a Brownian motion model.
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There is no current software package, in the case of phy-
logenetic OU models, that allows for an arbitrary form of the
matrix H. Except for the Brownian motion case, nearly all as-
sume that H has to be symmetric-positive-definite (note that
this encompasses the single trait case). mvMORPH (Clavel et al.,
2015), SLOUCH (Hansen et al., 2008) and mvSLOUCH (Bartoszek
et al., 2012) seem to be the only exceptions. mvMORPH and
mvSLOUCH allow for a general eigendecomposable H (with op-
tions to restrict it to diagonal, triangular, symmetric positive-
definite, positive eigenvalues, real eigenvalues or general invert-
ible). Furthermore, mvSLOUCH allows for a special singular struc-
ture of H. The matrix has to have in the upper-left-hand cor-
ner an invertible matrix (SLOUCH, the univariate predecessor of
mvSLOUCH has a scalar here), arbitrary values to the right and
0 below. This type of model is called an Ornstein–Uhlenbeck–
Brownian motion (OUBM) model. In contrast, when H is non-
singular the model is called an Ornstein–Uhlenbeck–Ornstein–
Uhlenbeck (OUOU) one, some variables are labelled as predictors
while the rest as responses.

It is of course not satisfactory to have restrictions on the form
of H, unless these are motivated by purely biological reasons.
Different setups have different biological interpretations with
regard to modelling causation (see Bartoszek et al., 2012; Reitan
et al., 2012). In particular singular matrices will be interesting as
they will correspond to certain linear combinations of traits under
selection pressures while other linear combinations are free of
this. The OUBM model is a special case where a pre-defined group
of traits is assumed to evolve marginally as a Brownian motion.
Of course a more general setup is desirable and actually, as we
show in this work, possible.

With respect to computational feasibility, the only assumption
we impose on H is that it possesses an eigendecomposition, H =

PΛP−1 (Λ is a diagonal matrix, and the i-th element of the diag-
onal is denoted as λi). In particular Λ can be singular, i.e. some
eigenvalues are 0 and furthermore the eigenvalues/eigenvectors
are allowed to be complex.

In this work we assume that Σx is upper triangular. Despite
how it looks at first sight, this is not any sort of restriction, as
in the likelihood we have only Σ := ΣxΣ

T
x . We furthermore

assume that Σ is non-singular, otherwise the whole model would
be singular from a statistics point of view.

If we assume that the process starts at a value x⃗(0) = x⃗0, then
after evolution over time t (assuming all parameters are constant
on this interval) it will be normally distributed with mean vector
and variance–covariance matrix (Eqs. (A.1, B.2) Bartoszek et al.,
2012)

E
[
x⃗
]
(t) = e−Ht x⃗0 +

(
I − e−Ht

)
θ⃗ ∈ Rk

Var
[
x⃗
]
(t) =

∫ t
0 e−HvΣe−HT vdv

= P
([

1
λi+λj

(
1 − e−(λi+λj)t

)]
1≤i,j≤k

⊙ P−1ΣP−T
)
PT

≡ V(t) ∈ Rk×k,

(18)

where I is the identity matrix of appropriate size and ⊙ rep-
resents the Hadamard, entrywise, matrix product. Notice that
in the above, H only enters the moments through its exponen-
tial. Therefore the moments can be calculated (and hence the
distribution is well defined) for all H, including defective ones.
However, if H has (as we assumed) an eigendecomposition, then
the exponential and in turn variance formula can be calculated
effectively. If λi = λj = 0, then the term in the variance has to
be treated in the limiting sense λ−1(1 − e−λt ) → t with λ → 0.
Therefore, the variance matrix is always well defined and never
singular for t > 0.

We assumed that H has to have an eigendecomposition while
the process is well defined for any H, including defective ones.
Calculation of the matrix exponential for a defective matrix can
be done using Jordan block decomposition. However, we do not
provide such functionality, as Jordan block decomposition is nu-
merically unstable and in fact, we are not aware of any R im-
plementation of it. Hence, our framework cannot calculate the
model likelihood when H is a defective matrix. Therefore, in the
current implementation, the matrix H is checked (by checking if
the eigenvector matrix from eigen()’s output is non-singular,
Corollary 7.1.8., p. 353 Golub and Van Loan, 2013) before eval-
uating the likelihood and, if defective, an NA likelihood value is
returned. It is important to stress here that defectiveness is the
exception and not the rule for matrices.

We now turn to showing how to construct the composite
parameters found in the proof of Theorem 1 from the OU process
representation of Eq. (17).

To simplify the notation, for each tip i ∈ {1, . . . ,N}, we denote
by Σi

e the sum of the measurement error for i (i.e. Verr,i, see
Eq. (16)) and/or any intra-species variability variance that has not
been accounted for by the phylogenetic OU process (i.e. the global
or regime-specific parameter Σe, see Section 3.3). Then, based on
the definition of the function V(t), Eq. (18), for any tip or internal
node i ∈ {1, . . . ,M − 1}, we define

Ṽi ≡

{
V(ti) + Σi

e if i is a tip
V(ti) otherwise.

(19)

Theorem 4. Let k⃗i be the vector of coordinates on which x⃗i
is observed, k⃗j be the vector of coordinates for x⃗j and k⃗ the full
vector of coordinates. Using the parametrization found in the proof
of Theorem 1 a multivariate Ornstein–Uhlenbeck process of evolution
can be represented as

Vi = Ṽi[k⃗i, k⃗i] ∈ R|k⃗i|×|k⃗i|,

ω⃗i =

(
I[k⃗i, k⃗] − e−Hti [k⃗i, k⃗]

)
θ⃗ [k⃗] ∈ R|k⃗i|,

Φi = e−Hti [k⃗i, k⃗j] ∈ R|k⃗i|×|k⃗j|.

(20)

Proof. In the multivariate OU case, Eq. (1) will be

pdf (x⃗i|x⃗j, ti) = N
(
e−Hti [k⃗i, k⃗j]x⃗j

+

(
I[k⃗i, k⃗] − e−Hti [k⃗i, k⃗]

)
θ⃗ [k⃗],Vi[k⃗i, k⃗i]

)
. □

These formulae do not depend on whether the eigenvalues of
H are positive, negative or 0. Only with Vi will we need to take
an appropriate limit as an eigenvalue becomes 0, see comments
after Eq. (18).

Corollary 1. For a multivariate Brownian motion process of evolu-
tion, we have H = 0 and Ṽi = tiΣ + δi∈{1,...,N}Σ

i
e. Hence, using the

parametrization found in the proof of Theorem 1 one can represent
it as

Vi = Ṽi[k⃗i, k⃗i] ∈ R|k⃗i|×|k⃗i|,

ω⃗i = 0⃗[k⃗i] ∈ R|k⃗i|,

Φi = I[k⃗i, k⃗j] ∈ R|k⃗i|×|k⃗j|.

(21)

In Fig. 3, panel C, one can see an example collection of tip ob-
servations resulting from simulating of a bivariate trait following
a BM process on top of a phylogeny and in panel D following an
OU process.

4.2. Multivariate Ornstein–Uhlenbeck with jumps (JOU)

OU processes with jumps (hereby denoted JOU) capture the
key idea behind the theory of punctuated equilibrium (see Sec-
tion 3.5). If the speed of convergence of the process is large
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Fig. 3. Simulations of bivariate trait evolution under a BM, an OU and a JOU model with two regimes. The colour corresponds to the regime with red denoting
regime ‘‘a’’ and blue denoting regime ‘‘b’’. A. Model parameters: each parameter has the same value for the model types written in parentheses, e.g. the parameters
x⃗0 and Σ are shared by all models, while the parameter µ⃗J is used only in the JOU model. B. A birth–death tree generated using the function pbtree() and
sim.history() from the package phytools (Revell, 2011). Parameters of the simulation: speciation-rate λ = 1, extinction-rate δ = 0.5, migration rate from regime
‘‘a’’ to ‘‘b’’ Qa→b = 0.1; from regime ‘‘b’’ to ‘‘a’’ Qb→a = 0.01. C. Scatter plots of the trait values at the tips after random simulation using the function PCMSim() of
the PCMBase package. The horizontal facets correspond to time intervals (also denoted by vertical grey lines in panel B). For BM, all observed values centre around
the initial value, because the process does not have a directional component. The OU regimes have diagonal optima, reflected by the predominance of red dots in
the bottom-left and blue dots in the top-right corners. There are several ‘‘clouds’’ of blue dots because the shift from ‘‘a’’ to ‘‘b’’ has not occurred at the same time
for all lineages. For JOU, the shift from ‘‘a’’ to ‘‘b’’ is accompanied by a positive jump in the mean value for both traits. These jumps compensate for the delay in
the shift from ‘‘a’’ to ‘‘b’’. Hence, most blue points form a cloud near the optimum for ‘‘b’’.

enough, then the stationary distribution is approached rapidly
and the stationary oscillations around the (constant) mean can
be interpreted as stasis between jumps.

The framework allows for calculating the likelihood of JOU
models with normally distributed jumps in the trait’s value
occurring at user-specified points on the tree. The location of the
jumps is specified by the user through the edge.jump of the tree
object (see Section 3.5). Further, the jump distribution is specified
by a k-vector parameter µ⃗J denoting the mean of the jumps and
a k × k matrix parameter ΣJ denoting the variance–covariance
matrix of the jumps. These two parameters can be shared by all
regimes or regime-specific. The following two corollaries describe
how the definitions of Vi, ω⃗i and Φi change in the case of JOU and
JBM processes (JBM standing for a Brownian motion with jumps
process).

Corollary 2. For a multivariate JOU process, jump distribution
N (µ⃗J ,ΣJ ) and denoting by the indicator ξi the occurrence of a jump

at the start of the branch leading to node i, we have

Ṽi =
∫ ti
0 e−HvΣe−HT vdv + ξie−HtiΣJe−HT ti + δi∈{1,...,N}Σ

i
e. (22)

Using the parametrization found in the proof of Theorem 1 one can
represent it as

Vi = Ṽi[k⃗i, k⃗i] ∈ R|k⃗i|×|k⃗i|,

ω⃗i = ξie−Hti [k⃗i, k⃗]µ⃗J [k⃗] +

(
I[k⃗i, k⃗] − e−Hti [k⃗i, k⃗]

)
θ⃗ [k⃗] ∈ R|k⃗i|,

Φi = e−Hti [k⃗i, k⃗j] ∈ R|k⃗i|×|k⃗j|.

(23)

The multivariate JBM model follows as an immediate corollary
(H → 0).

Corollary 3. For a multivariate JBM model (jumps defined the same
as in Corollary 2) the variance at a node i is Ṽi = tiΣ[k⃗i, k⃗i] +

ξiΣJ [k⃗i, k⃗i] + δi∈{1,...,N}Σ
i
e. Using the parametrization found in the
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proof of Theorem 1 one can represent it as

Vi = Ṽi[k⃗i, k⃗i] ∈ R|k⃗i|×|k⃗i|,

ω⃗i = ξiµ⃗J [k⃗i] ∈ R|k⃗i|,

Φi = I[k⃗i, k⃗j] ∈ R|k⃗i|×|k⃗j|.

(24)

In Fig. 3, panel E, one can see an example collection of tip ob-
servations resulting from simulating of a bivariate trait following
a JOU process along a phylogeny.

4.3. Beyond the Ornstein–Uhlenbeck process

There are a number of popular PCM models that do not fall
into the above described OU framework despite appearing very
similar. In particular we mean the BM with trend, drift, early
burst/Accelerating–decelerating (EB/ACDC) or white noise (im-
plemented in the geiger R package Harmon et al., 2008). With
the exception of white noise, they all can be represented by the
SDE (cf. Eq. (1) of Manceau et al., 2016){
dx⃗(t) =

(
h⃗(t) − Hx⃗(t)

)
dt + Γ(t)dW⃗ (t),

x⃗(0) = x⃗0.
(25)

Notice that setting h⃗(t) = θ⃗ and Γ(t) = Σx to constants
we recover the ‘‘usual’’ OU process. Equations (4a) and (4b) in
Manceau et al. (2016) provide the expectation and variance under
the model. Localizing these two equations to a single branch, we
can write

E
[
x⃗i|x⃗j

]
= e−tiHi x⃗j +

∫ tei
tsi

e(s−tei )Hi h⃗i(s)ds,

Var
[
x⃗i|x⃗j

]
=

∫ tei
tsi

e(s−tei )HiΓi(s)ΓT
i (s)e

(s−tei )H
T
i ds,

(26)

where tsi is the time at the start of the branch and tei at the end
(ti = tei − tsi ). This corresponds in our framework to

ω⃗i =
∫ tei
tsi

e(s−tei )Hi h⃗i(s)ds,

Φi = e−tiHi ,

Vi =
∫ tei
tsi

e(s−tei )HiΓi(s)ΓT
i (s)e

(s−tei )H
T
i ds.

(27)

Hence, in the subcase of non-interacting lineages, our framework
covers Manceau et al. (2016)’s. As the initially mentioned models
are subcases (cf. Tab. 1 of Manceau et al., 2016) they are available
in our framework. To obtain the values of the ω⃗i, Φi and Vi
parameters in Eq. (27) one has to either analytically calculate the
integrals for specific h⃗i(·) and Γ(·) functions or consider a general
numerical integration scheme.

Apart from the previously considered OU model, for some
other typical PCM models the integrals can be solved analytically.

1. ACDC model (after generalizing the one dimensional model
presented by Blomberg et al., 2003; Harmon et al., 2010, to
the multivariate case)

ω⃗i = 0⃗,
Φi = I,
Vi =

∫ tei
tsi

esRiΣiΣ
T
i e

sRT
i ds.

(28)

See Eq. (18) for how to calculate the integral, for Vi, when
the matrix R is eigendecomposable.

2. BM with drift

ω⃗i = h⃗iti,
Φi = I,
Vi = ΣiΣ

T
i ti.

(29)

3. BM with trend—in the most general setup of a linear form
under the integral for Vi (based on the Supporting Informa-
tion of Harmon et al., 2010, in the one dimensional case)

ω⃗i = 0⃗,
Φi = I,
Vi =

∫ tsi +ti
tsi

(Us + W) ds = U t2i
2 + Wti.

(30)

4. The white noise process corresponds to a situation, where
the phylogeny does not contribute to the covariance struc-
ture between the species, so that all species are regarded
as independent identically distributed observations of the
same multivariate Gaussian distribution with global mean
x⃗0 = µ⃗ and same variance–covariance matrix Σe.

Naturally everything should be appropriately (as described in
Section 3.2) adjusted if missing values are present.

5. Discussion

In this article, we have studied the sub-family of the Gaus-
sian phylogenetic models GLInv . We have shown that, excluding
the case of interacting lineages discussed previously in Manceau
et al. (2016), GLInv contains most, if not all, of the contemporary
Gaussian models used in phylogenetic comparative methods. In
mathematical terms, GLInv includes the models of continuous trait
evolution which are represented by a linear stochastic differential
equation (SDE, see the representation by Eq. (1) of Manceau
et al., 2016) whose drift matrix (‘‘deterministic part’’ of the SDE)
is piecewise constant with respect to the phylogeny, and diffu-
sion matrix (‘‘random part’’, sometimes referred to as ‘‘random
drift part’’ in biological literature) does not depend on the trait.
Furthermore, GLInv includes models outside the above SDE repre-
sentation, such as Lévy processes with jumps in the trait values
occurring at random time instances (Landis et al., 2012; Duchen
et al., 2017). Such models are of high biological relevance because
they hold promise for attacking the longstanding question of
whether ‘‘evolution is gradual or punctuated?’’.

We have formulated a computationally efficient framework
for calculating the likelihood of GLInv models. For that purpose,
we have taken advantage of the absence of interactions between
different lineages of the tree and derived an analytical integration
of the multivariate conditional densities over the unobserved trait
values at the internal nodes. Hence, the main contribution of this
work is in formulating and implementing a general mathematical
framework for linear in N likelihood calculation of GLInv models
(see also Eq. S4, Appendix D). However, for increasing numbers
of traits, k, the likelihood calculation time, multiplied by the
increasing number of needed likelihood calculations, will remain
a key bottleneck preventing fast statistical inference. This is due
to the fact that, complex k × k matrix operations are executed
for each branch of the tree, even in the simplest case of a BM
model. When the matrices Φ and V (Definition 1) are dense,
the asymptotically best known complexity of such operations
is O(k2.373) (Le Gall, 2014). We therefore do not believe that a
probabilistic inference of such models would be practical be-
yond models of a few dozen traits. For bigger numbers of traits,
the same theory presented here can be reused, but the models
should be restricted to parametrizations where the matrices Φ

and V (Definition 1) are sparse and new implementations taking
advantage of this sparsity need to be developed.

To further clarify the position of our work in the rapidly grow-
ing field of PCMs, we need to mention two previous publications
that have contributed linear in N algorithms for multivariate PCM
likelihood calculation. In the first work Bastide et al. introduce
a phylogenetic EM method for maximum likelihood inference of
shifts in a multivariate SCALAR OU model (Bastide et al., 2018).
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The upward recursion part of the E-step of the phylogenetic EM
method includes an equivalent pruning algorithm for propagating
the moments of the conditional Gaussian distributions from the
tips to the root of the tree (Appendix 2, Section E step Bastide
et al., 2018). The authors clarify that this procedure allows to
calculate the log-likelihood in O(N) time and generalizes to the
same family of models (GLInv). We acknowledge this fact, noting
the different mathematical representation (i.e. Gaussian moment
propagation versus quadratic polynomial integration). Another
difference in the two works is the way missing measurements
are treated. PhylogeneticEM uses a numerical approach by set-
ting entries in the variance–covariance matrix corresponding to
non-observed traits to infinity and then defining appropriate
pseudo-inverse and lower-dimensional determinant operators.
Conversely, PCMBase takes care of missing measurements by
considering only the observed dimensions (i.e. appropriate rows
and columns) of the vector- and matrix-terms involved in the
likelihood calculation (see Section 3.2). Further, as conceptual
novelties in our work, we emphasize the included support for
non-existing traits (apart from missing measurements) and the
formal proof that the GLInv-family is identical with the scope of
the pruning procedure (Theorems 1 and 3). Finally, the imple-
mentations resulting from the two works differ substantially in
their intended usage: the PhylogeneticEM R-package targets the
ML inference of shift points in the optimum (θ⃗ ) of a SCALAR OU
model, while the goal of the PCMBase package is to provide a
convenient programming interface for specifying and calculating
the likelihood of any GLInv-model.

Another recent work is the 3-point structure likelihood cal-
culation algorithm developed by Ho and Ané (2014a) and ex-
tended to multivariate OU-models by Goolsby et al. (2016). Like
our framework, the 3-point structure algorithm also has O(N)
complexity. Unlike the 3-point structure algorithm, though, our
framework does not require any model-specific transformation of
the branch lengths. To help appreciating this simplicity, consider
the case of a univariate OU process realized on a non-ultrametric
tree. To apply the 3-point structure algorithm, the N×N variance
covariance matrix, V, resulting from the tree and the model
parameters must satisfy a 3-point structure property, as defined
on p. 400 in Ho and Ané (2014a).3 In the case of a BM model the
3-point structure property holds for any type of tree. In the case
of a univariate OU model, though, the 3-point structure property
holds only if the tree is ultrametric. Each element Vij of V is
a function of the distance from the root to (i, j)’s most recent
common ancestor, tij, and the phylogenetic distance between the
two taxa, dij (see Equation on p. 402 in Ho and Ané (2014a)). ‘‘The
part involving tij satisfies the 3-point condition but the part with dij
does not necessarily. It does if the tree is ultrametric because then
dij only depends on the age of the most recent common ancestor of i
and j, as we can write dij = 2(T − tij) where T is the tree height’’ (p.
402 Ho and Ané, 2014a). Hence, to apply the 3-point structure
algorithm in the case of a non-ultrametric tree, one needs to
show that the process satisfies a ‘‘generalized’’ 3-point structure
property, meaning that there exist diagonal N × N matrices D1
and D2, and a 3-point structure N ×N variance covariance matrix
Ṽ, such that the original N ×N variance covariance matrix can be
expressed as V = D1ṼD2 (p. 401 Ho and Ané, 2014a). For the
univariate OU process, the authors show that the ‘‘generalized’’
3-point structure property is satisfied by a matrix D1 = D2 =

diag(eαui; i = 1, . . . ,N), where α is a current estimate for the
(univariate) selection strength OU parameter and ‘‘the external
branch to taxon i is extended (or shortened) by ui, in such a way
that the modified tree is ultrametric’’ (p. 403 Ho and Ané, 2014a).

3 Until the end of this paragraph, we use the notation in Ho and Ané (2014a).

However, it remains unclear how the matrices D1 and D2 should
be defined in the case of a multivariate OU process, where the
selection strength parameter is a matrix, rather than a scalar
(see Section 4.1). Also, it is not clear whether the same approach
can be generalized in the case of an OU process with shifts
or in the case of other Gaussian models with shifts. This, we
think is the main reason why, in its current version (0.2.9) the
R-package Rphylopars, using a multivariate generalization of the
3-point structure algorithm, does not support OU processes on
non-ultrametric trees.

In contrast, once a GLInv model is formulated in terms of
the transition functions ω⃗, Φ and V (Definition 1), the frame-
work can be used to calculate the model likelihood on any kind
of tree, including non-ultrametric trees and trees with poly-
tomies. This is a major improvement with respect to current
multivariate implementations with support for non-ultrametric
trees, such as the R-packages mvMORPH (Clavel et al., 2015)
and RPANDA (Manceau et al., 2016), which calculate the model
likelihood in quadratic in N time using the standard formula for
calculating multivariate Gaussian densities (see also Appendix D).
mvSLOUCH (Bartoszek et al., 2012) is another R-package that
allows for non-ultrametric trees but now uses PCMBase as its
likelihood calculation engine.

Furthermore, our method can naturally handle measurement
error (intra-species variability), missing data, non-existing traits
for some of the species, and shifts at arbitrary points along the
tree, both in the parameters of a model as well as the type of the
model within the GLInv family. The support for non-ultrametric
trees extends the application scope of our framework to macro-
evolutionary studies including sequentially sampled data from
the fossil record, as well as epidemiological studies, in which the
phylogenetic tree represents an approximation of the transmis-
sion tree of infected patients, as in the works of Hodcroft et al.
(2014), Bertels et al. (2017) and Mitov and Stadler (2018).

We implemented our computational framework within the
R-package PCMBase (Appendix A). This offers the possibility
for fast likelihood calculation for all models in the GLInv family,
including mixed-type models, where different types of models are
realized on different parts of the phylogenetic tree. Further, it is
extremely flexible allowing the user to easily use it as a computa-
tional engine for their particular modelling setup/parametrization.
Currently, the package includes numerous parametrizations of
the BM and the OU model and their jump-enabled variants.
Other model types within GLInv can be implemented using the
package extension interface (Appendix A). Finally, we note that
the functional scope of PCMBase has been limited to specification,
simulation and likelihood calculation for GLInv models. While the
package does not provide functions for model inference, such
functionality has been provided in depending packages, such as
the new version of mvSLOUCH and the new R-packages PCM-
Fit (Mitov et al., 2019) and PCMBayes (https://venelin.github.io/
PCMBayes).
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