
Transfer Learning of Genome Wide
Transcription Dynamics during

Malaria Infection

Master Thesis

Venelin Mitov

September 23, 2013

Advisor: Prof. Dr. Manfred Claassen

Department of Computer Science, ETH Zürich





Abstract

Malaria continues to be an endemic disease in vast regions of the world,
despite an ongoing active research for its treatment and prevention
[WHO, 2012]. One of the major challenges towards understanding
the mechanism of the disease in humans at the molecular level is the
difficulty to obtain precise post-infection-time series of gene expression
profiles in human patients. This thesis project proposes a transfer
learning approach to infer post-infection time labels in human patients
from controlled time course experiments of malaria infected mice. The
proposed approach is supposed to achieve this task on the basis of a
gene expression time course dataset of malaria infection in a model
organism and a gene expression dataset of malaria infected human
individuals with unknown post-infection time. Specifically, we develop
and apply our methodology on the basis of an unpublished mouse time
series dataset (3 infected mice 1-26 days, 10 uninfected control mice)
from our collaborators from the Schneider lab, Stanford University and
a published gene expression dataset for a cohort of human individuals
[Idaghdour et al., 2012].

The transfer learning approach comprises three steps. First, we build
a statistical model of the post-infection time in mice and fit it to the
available time-labeled mouse samples. To that end, we explore different
classification and regression formulations of supervised post-infection-
time inference in malaria infected organisms and evaluate the resulting
models with respect to their generalization error and ability to perform
automatic variable selection. Next, we train selected model-candidates
on infected mouse data, which has been restricted to genes with known
homologs in humans. Finally, we apply the resulting models to samples
from malaria infected human patients, in order to estimate their post-
infection time.

The main contributions of our work are the development of a novel fused
elastic net logistic regression model for ordered multi-task classification
and the design of a novel ensemble learning method for supervised
post-infection time inference, based on the aggregation of simple binary
classificaton models. Based on the results, we conclude that the gene-
expression profile of an infected host-organism preserves information
with respect to the beginning of the infection, and can be used to
characterize the disease progression on a fine time-scale.

i





Acknowledgments

I am greatly indebted to prof. Claassen, the supervisor of this thesis, for his
continuous support and guidance. I benefitted very much from his depth of
knowledge, professionalism, and scientific intuition. Our numerous meetings
provided many insightful ideas and impulses for this work.

Furthermore, I would like to thank my office-mates, Anita, Eirini, Ana
and Stefan for interesting discussions as well as for the enjoyable working
atmosphere at the institute.

Last but not least, I would like to express my special thanks to our collabo-
rators Brenda and David from the Stanford Microbiology and Immunology
Lab, who provided the experimental data for this research.

iii





Contents

Contents v

List of Figures vii

1 Introduction 1

2 Multi-Task Learning for Ordered Classification 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Supervised machine learning and classification . . . . 8
2.1.2 Linear logistic regression for binary classification . . . 9
2.1.3 Regularization and variable selection through penaliza-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Convex optimization for Classification . . . . . . . . . 16
2.1.5 A brief overview of multi-task learning . . . . . . . . . 20

2.2 The fused elastic net logistic regression (FENLR) method for
ordered binary classification . . . . . . . . . . . . . . . . . . . . 22

2.3 Experiments with synthetic data-sets . . . . . . . . . . . . . . . 32

3 Inference of post-infection time from infected murine gene-expression
data 37
3.1 Classification formulation . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 The k-Nearest Neighbor Predictor . . . . . . . . . . . . 39
3.1.2 The aggregated time-window predictor (ATWINP) . . 39

3.2 Regression formulation . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Comparative model evaluation based on mouse and human data 41

v



Contents

3.3.1 Model evaluation based on the post-infection-time pre-
diction error . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Model evaluation based on automatic variable selection 44
3.3.3 Estimation of post-infection time in humans . . . . . . 49

4 Discussion 51

A Appendix 53
A.1 Preprocessing and homology mapping of murine and human

microarray data . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.1.1 Murine Illumina Beadchip microarrays . . . . . . . . . 53
A.1.2 Human Illumina Beadchip microarrays . . . . . . . . . 54
A.1.3 Homology mapping from mouse to human genes . . . 54

Bibliography 57

vi



List of Figures

1.1 Life cycle of the malaria parasite . . . . . . . . . . . . . . . . . . . 2

2.1 Equi-height contours of the (penalized) negative log-likelihood
over the plane (β1, β2) for fixed values of β3 and β4. . . . . . . . . 15

2.2 Comparison of estimated expected prediction L01 error for differ-
ent models trained on synthetic data-sets. . . . . . . . . . . . . . 34

2.3 Histograms of estimated optimal regularizing parameters . . . . 35

3.1 The circular time-axis T, representing the post-infection time of
an organism, which recovered fully from the disease. . . . . . . . 38

3.2 Comparison of the tested predictors with respect to mean predic-
tion error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Comparison of the tested predictors with respect to prediction-
error for each day of infection . . . . . . . . . . . . . . . . . . . . . 44

3.4 Venn diagram of selected genes by each CV-fold . . . . . . . . . . 45
3.5 Heat-map representation of selected genes (Mouse-Human, ATWINP

EN (threshold=0.185) . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Heat-map representation of selected genes (Mouse-Human, ATWINP

FEN (threshold=0.2) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Post-infection time prediction in humans . . . . . . . . . . . . . . 50

vii





Chapter 1

Introduction

Malaria is a mosquito-borne infectious disease in humans and other ver-
tebrates, which continues to have a tremendous impact on the health and
economic situation in vast regions of the world. Due to increasing resistance
to the available medications and prevention tools [Parija and Praharaj, 2011,
Ranson et al., 2011, WHO, 2012], there is urgent need of development of
novel antimalarial drugs to counteract further spread of the disease [WHO,
2012].

Malaria is caused by parasites of genus Plasmodium (Plasmodium vivax, P.
ovale, P. malariae, P. knowlesi and P. falciparum) which are injected into the
human body during the bites/blood-meals of infected female mosquitoes of
more than 30 anopheline species WHO [2012]. The life-cycle of Plasmodium
parasites takes place in two hosts (Figure 1.1): (i) a vertebrate host, i.e. hu-
man, providing the environment for the development of Plasmodium from its
immature form, called sporozoite, to its gametocyte producing form, called
merozoite; (ii) a vector host, usually a female fertilized mosquito, which
takes up Plasmodium gametocytes from the bloodstream of an infected verte-
brate, provides these gametocytes with environment for maturing and sexual
reproduction and transports newly-born sporozoites to another vertebrate
host, where the cycle can begin again Schlagenhauf-Lawlor [2007]. Once
injected into the human bloodstream, the unicellular sporozoite travels to
a liver cell, where it divides asexually as a schizont, to give thousands of
blood-infective merozoites within 1 to 2 weeks Schlagenhauf-Lawlor [2007].
The merozoites quit the liver-cells to enter into the bloodstream, where they
penetrate into the erythrocites and continue to reproduce. At regular time-
intervals, which’s length depends on the Plasmodium species and ranges

1



1. Introduction

Figure 1.1: Life cycle of the malaria parasite

Courtesy: National Institute of Allergy and Infectious Diseases

between 48 and 72 hours, large amounts of erythrocites burst and release
newly formed merozoites in the bloodstream Schlagenhauf-Lawlor [2007].
These new parasites can develop into gametocytes, or invade other red blood
cells to reiterate the erythrocitic phase. The clinical symptoms of malaria are
due to the periodic invasion and destruction of large amounts of red blood
cells by the parasites, leading to malarial paroxysm Schlagenhauf-Lawlor
[2007]. The malarial paroxysm represents an acute febrile illness, which can
rapidly evolve towards a severe complication of the disease, such as serebral
malaria or severe anemia Schlagenhauf-Lawlor [2007].

Although much is known about the Plasmodium life cycle and the host-
parasite interaction at the cellular level, the underlying molecular mechanisms

2



remain poorly understood. In a GWA study of Plasmodium falciparum-
infected West African children, Idaghdour et al. [2012] confirms a strong
effect exerted by malaria infection on the human transcriptome by showing
that the gene expression profiles cluster largely, based on the infection status
and parasite load of the patients. While Idaghdour et al. [2012] characterizes
three major infection states, denoted as “control” (no infection), “low” and
“high” parasite load, it is also interesting to understand whether and how the
gene expression profile reflects the disease progression on a refined time-scale
covering the whole period from the infection through the recovery of the
patient. This knowledge might help identifying important gene interactions
in the early asymptomatic stages of the disease and unravel potential targets
for future drug and vaccine development.

One of the major challenges towards understanding the mechanism of the
disease in humans at the molecular level is the difficulty to obtain precise
post-infection-time series of gene expression profiles in human patients.
Symptom-based post-infection time inference is not possible, because the first
symptoms appear after a highly variable incubation period ranging between
1 week and several months [Brasil et al., 2011, Pongsumpun and Mumtong,
2011].

This thesis project proposes a transfer learning approach to infer post-
infection time labels in human patients from controlled time course ex-
periments of malaria infected mice. Transfer learning is a method in machine
learning that consists in applying the knowledge gained while solving one
problem to a different but related problem [West et al., 2007]. For example,
a machine learning model for recognition of facial expressions in women
can be applied for the recognition of facial expressions in men, because
men and women faces share a common set of features. Supposing that a
big proportion of the human genes have known homologs in other malaria
susceptible vertebrates, such as apes and mice, it should be possible to train
a statistical model, like linear regression, on genomic data obtained from a
model organism, and apply the fitted model to data comprising homology
mapped human genes. Specifically, we developed and applied classification
and regression statistical mothods on an unpublished mouse time series
dataset (3 infected mice 1-26 days, 10 uninfected control mice) from our
collaborators from the Schneider lab at Stanford University and a published
gene expression dataset for a cohort of human individuals Idaghdour et al.
[2012]. The main contributions of our work can be summarized as follows:

1. Development of the fused elastic net logistic regression (FENLR) model

3



1. Introduction

for ordered multi-task classification - a multi-task classification method
that we use to determine the association of a gene expression sample to
a given interval in the time-course of the infection (time-window) and
to automatically select relevant genes;

2. Development of the Aggregated Time-Window Predictor (ATWINP)
- an ensemble machine learning method for gene-expression based
post-infection time inference;

Our tests show that, compared to other machine learning methods, ATWINP
is significantly better at predicting the post-infection time label of test sam-
ples. In a cross-validation test on a dataset comprising 88 samples of 2589
differentially expressed mouse genes the expected difference between pre-
dicted and correct post-infection time was estimated at 1.28 days. ATWINP
achieved its best predictive performance when using FENLR as underlying
time-window classifier. The inherent ability of FENLR to perform automatic
feature selection by setting the coefficients of irrelevant features to zero al-
lowed us to identify a gene set whose expression time course dynamics is
informative for the inference of post-infection time. Based on these results
we conclude that the host’s gene-expression profile preserves information
regarding the beginning of the infection, and can be used to characterize the
disease progression on a fine time-scale.

Thesis Outline

This work is organized as follows.

In Chapter 2, we describe the fused elastic net logistic regression (FENLR)
model for ordered multi-task classification. The chapter begins with a theo-
retical introduction to supervised classification, focusing on linear logistic
regression as a method for estimating the conditional class probabilities
π(x) := P[Y = 1|X = x]. We compare the maximum likelihood (ML) and
a-posteriori (MAP) estimation approaches and illustrate the combined effect
of the Gaussian, Laplacian and fused Laplacian regularizing priors in the case
of a single binary classification task. Then we briefly comment on two widely
used convex optimization methods, the Newton-Raphson’s and the ADMM,
which form the algorithmic basis of the FENLR fitting procedure. We intro-
duce multi-task supervised learning through an overview of previous work
in the field and give examples of the special case of ordered multi-task binary
classification. On that basis, we formulate the FENLR model and develop a
novel numerical algorithm for finding its estimate, which adapts very well to

4



the case of high dimensional data with more predictor variables than training
observations (d� n). To demonstrate the performance of the model in the
ordered multi-task setup, we report results from experiments with synthetic
data.

In chapter 3, we investigate different supervised learning formulations of the
problem of genome based post-infection time inference in malaria-infected or-
ganisms. We formulate the aggregated time-window predictictor (ATWINP)
and two conventional methods: penalized linear regression and first nearest
neighbor. All methods are compared based on their predicting performance,
which is measured in terms of expected deviation between the predicted
and the true day of infection. By selecting the model with minimal mean
error and analyzing its coefficient profile, we provide a list of selected genes,
which should be informative for analyzing the disease progression.

The thesis work ends with a discussion of the results and an outlook for
future work.

5





Chapter 2

Multi-Task Learning for Ordered
Classification

2.1 Introduction

A decisive cognitive skill in humans is their ability to relate a new concept to
a known one. This learning process consists in recognizing the qualitative
similarities and differences between the building elements of the new and
the known concept. The same idea applies when a human has to learn a
set of tightly related new concepts: the ability to build associations between
the new concepts in terms of resemblances and contrasts can tremendously
improve the quality and the speed of learning. Multi-task learning is the
translation of this natural approach to the domain of pattern recognition
and machine learning. Usually, this approach is accomplished by building
a model that (i) includes the a-priori knowledge about task relatedness, and
(ii) allows for the tasks to be learned jointly, such that learning one task
has a positive effect on the learning of its related tasks. The rest of this
section recapitulates several basic machine learning concepts and definitions,
establishes the mathematical notation for the rest of this chapter and gives a
brief overview of previous work in the field of multi-task learning. section 2.2
describes the fused elastic net logistic regression model for ordered multi-
task binary classification. In section 2.3, we report some experiments of the
method conducted on synthetically generated data. Chapter 3 will expand
the application of this method to a real-world setting consisting of estimating
post-infection time in malaria infected organisms. This chapter concludes
with a short discussion of the results and findings.

7



2. Multi-Task Learning for Ordered Classification

2.1.1 Supervised machine learning and classification

In supervised learning, a learning task consists in inferring a function from
a labeled training data, which makes a “prediction” of the label, when
evaluated on a new data-point [Mohri et al., 2012]. Depending on the type of
the output labels, we distinguish two broad families of supervised learning
tasks, namely, regression for numerical labels, such as real numbers, and
classification for labels that are taken from some finite set of categories. A
common approach to supervised learning consists of building a parametric
model of the output-label as a function of the features describing the data,
and to fit the parameters of the model to a set of “training” observations,
assuming that these training observations are sampled independently and
identically (abbr. i.i.d.) from the unknown true distribution of the data.

Classification constitutes a well studied family of supervised learning tasks
with a broad range of applications. Given is training data which are realiza-
tions from

(X1, Y1), ..., (Xn, Yn) i.i.d. ,

where the predictor or feature vector Xi ⊂ Rd, i = 1, ..., n, is a random
vector and the vector of classes or labels Y = (Y1, ..., Yn) ⊂ {0, 1, ..., J − 1}n

is a discrete random vector. We denote the training data as the extended
matrix [X|y], where X = [x1, ..., xn]T ∈ Rn×d is called the design matrix, and
the vector y = (y1, ..., yn) ∈ {0, 1, ..., J − 1}n is called the response vector.
The rows of [X|y], (xi, yi)

T, are called training observations. The numbers
0, 1, ..., J − 1 denote class-labels with or without ordering between them. The
goal is to find a function called classifier C : Rd → {0, 1, ..., J − 1}, assigning
to a predictor vector x ∈ Rd an output label, which is a prediction for the
corresponding true label y. A common performance measure for a classifier
is the expected zero-one test set error [Hastie et al., 2001, Bühlmann and
Mächler, 2011]:

L01(C) := P[C(Xnew) 6= Ynew]. (2.1)

Let
πj(x) := P[Y = j|X = x], j = 0, 1, ..., J − 1 (2.2)

be the conditional probability that a given sample x is labeled by j. The Bayes
classifier, defined for each x individually as

CBayes(x) := arg max
0≤j≤J−1

πj(x), (2.3)

is the optimal classifier with respect to the zero-one error and the minimum
of this error function, known as the Bayes risk is [Bühlmann and Mächler,

8



2.1. Introduction

2011]:

P[CBayes(Xnew) 6= Ynew] (2.4)

In reality, the conditional probability distributions πj(·) are not known and
it is impossible to construct the Bayes classifier. Therefore, the common
approach is to obtain a multivariate function estimate π̂j(·) of πj(·) and
to plug it into the definition of the Bayes classifier, to obtain an estimated
classifier:

Ĉ(x) := arg max
0≤j≤J−1

π̂j(x), (2.5)

2.1.2 Linear logistic regression for binary classification

In this chapter, we concentrate on the case J = 2, known as binary classifi-
cation, and we simplify the notation by denotingπ̂1(x) as π̂(x). Obtaining
the estimate π̂(x) is sufficient to define Ĉ(x), as π̂0(x) = 1− π̂(x). We con-
sider linear logistic regression (LLR) as our method of choice for finding
an estimator π̂(x). While it performs comparably to competing methods,
such as support vector machines (SVM) and linear discriminant analysis
(LDA), LLR has some notable advantages in that it provides a direct esti-
mate of the probability π(x) and tends to be more robust in the case d� n.
Given the multivariate function π : Rd → [0, 1], the strictly monotone logis-
tic transform π → log(π/(1− π)) =: logit(π) maps the interval (0, 1) to
the real line R and makes it possible to use any real valued function as a
model for the logistic transform of π and then to apply the inverse transform
logit(π) → exp(logit(π))

1+exp(logit(π))
= π to obtain a probability estimate π̂ ∈ (0, 1).

Linear logistic regression (LLR) is defined as the model

logit(π(x)) ≈ β0 + xT β\0 =: g(x), (2.6)

in which the logistic transform is modeled as the linear function g of the
predictor vector x with coefficients β = (β0, β1, ..., βd)

T. To simplify the
notation, we assume that we have added an offset predictor variable equal
to 1 as first component of the predictor vector x, so that we can write g as a
vector product:

g(x) = xT β (2.7)

9



2. Multi-Task Learning for Ordered Classification

The inverse logit transform, logit−1, gives the formula for calculating π(x)
from g(x):

π(x) =
exp[logit(π(x))]

1 + exp[logit(π(x))]

≈ exp[xT β]

1 + exp[xT β]
(2.8)

For a fixed design matrix X, the conditional likelihood function of the model
coefficients β is defined as the conditional probability distribution of the
response vector Y, given X and β:

Lcond(β; [X|y]) : = P[Y = y|X, β] (2.9)

=
n

∏
i=1

Bernoulli(Yi = yi; π(xi; β)) (2.10)

=
n

∏
i=1

π(xi; β)yi(1− π(xi; β))1−yi (2.11)

Often it is practical to use the negative natural logarithm of the conditional
likelihood, because it converts all products into sums, without shifting the
optimum of the likelihood:

−`cond(β; [X|y]) : = − log{Lcond(β; [X|y])} (2.12)

= −
n

∑
i=1

{
yixT

i β− log[1 + exp(xT
i β)]

}
(2.13)

A useful trick that allows us to write 2.13 in a more convenient form, is
to substitute the responses yi ∈ {0, 1} by ỹi := (2yi − 1) ∈ {−1, 1}. By
plugging yi = (ỹi + 1)/2 , and representing the left summand yixT

i β in the
form log[exp( 1

2 ỹixT
i β + 1

2 xT
i β)] the negative conditional log-likelihood can be

written as:

−`cond(β; [X|y]) =
n

∑
i=1

log
(

1 + exp(−ỹixT
i β)

)
(2.14)

= ∑ log (1 + exp(−ỹ� Xβ)) , (2.15)

where in the last line the symbol ′ ∑′ denotes sum over all elements of the
underlying vector, the symbol ’�’ denotes the element-wise multiplication
between vectors or matrices with the same dimensions and the bold number 1

10



2.1. Introduction

denotes the n-dimensional real vector having all elements equal to 1. Further
in this chapter, we will always use the transformed response ỹ ∈ {−1, 1} ,
and, to simplify the notation, we will omit the superscript ’˜’.

Fitting the coefficients β to the training data [X|y] is done by maximiz-
ing the conditional likelihood or, equivalently, by minimizing the negative
conditional log-likelihood:

β̂ML : = arg min
β∈R1+d

−`cond(β; [X|y]) (2.16)

where β̂ML is called the maximum conditional likelihood estimate of β,
given training data [X|y]. While no analytic solution is known for this
convex nonlinear optimization problem, the double differentiability of the
objective function −`cond with respect to β allows to find it’s global minimum
efficiently using the Newton-Raphson’s gradient descent method, which we
briefly describe in section 2.1.4.

Note that to obtain the estimate β̂ML via linear logistic regression, we didn’t
make any assumption about the true distribution of the predictors X. In
contrast, another widely used model for classification, linear discriminant
analysis (LDA), assumes normal conditional distributions of the predictor
variables given their assigned class labels, (X|Y = j) ∼ Nd(µj, Σ), j = 0, 1,
and maximizes the full likelihood

L(β; [X|y]) : = P[Y = y, X|α] (2.17)
= P[X; α]P[Y = y|X, α], (2.18)

where α are the linear coefficients of the LDA model. As explained in Hastie
et al. [2001], p.127-128, the exact functional form of P[Y = y|X, β] in eq.
(2.9) and P[Y = y|X, α] in eq. (2.18) is the same, but with the inclusion
of the marginal density, P[X; α], in the full likelihood, LDA incorporates
more information about the coefficients α, so they can be estimated more
efficiently, i.e. based on fewer training observations.1On the other hand,
calculating P[X; α] in (2.18) requires the empirical estimation of the Gaussian
moments µj and Σ. While estimating the common covariance matrix Σ
empirically might be affordable, because it doesn’t need labeled observations,
the empirical calculation of the first moments µj can be misleading in the
cases of violations of the normality assumption, few training observations or

1According to Hastie et al. [2001], in the worst case, maximizing the conditional instead
of the full likelihood might result in about one third more training observations needed to
achieve the same predictive performance.

11



2. Multi-Task Learning for Ordered Classification

the presence of outliers in the training data and, particularly in the case of
our interest, d� n. Unless otherwise stated, through the end of this chapter,
we will always work with conditional log-likelihoods, and in order to avoid
cumbersome terminology, we will skip the subscript ”cond”.

Another competing model, the Support Vector Machine (SVM) [Hastie et al.,
2001], is known to have nearly equivalent performance on predicting the
correct labels, as LLR, but doesn’t provide a direct estimate of the conditional
probabilities πj . Since our real world application (see chapter 3) requires
the specification of these conditional probabilities, we abstained from also
exploring SVM classification.

2.1.3 Regularization and variable selection through penalization

Two important criteria in help of evaluating the quality of a model areZou
and Hastie [2005]:

1. accuracy of predicted outcome on unseen data - a model that predicts
poorly is hard to defend;

2. interpretation of the model - models that reveal important relation-
ships between the outcome and the covariates are often helpful for
researchers, who struggle to understand the underlying mechanisms of
some studied process.

A toy example We simulate training data [X|y], X ∈ R8×4, y ∈ {0, 1}8.
The covariate vectors X·1, X·3, X·4 are sampled from the standard normal
distribution, N (0, 1), and Xi,2, i = 1, ..., 8, are sampled from N (Xi,1, 0.5)
resulting in cov(X·1, X·2) = 0.86. This setting simulates an often encoun-
tered practical case, when one of the covariates is a noisy copy of another
one, resulting in very high correlation between their predictor vectors. The
responses yi, i = 1, ..., 8 are sampled from Bernoulli[π(Xi·; β)], where the

probabilities π are defined as in eq. (2.8), i.e. π(x; β) := exp[xT β]
1+exp[xT β]

and the

coefficients vector is β := (3, 3,−0.5, 0)2. In the same way, we simulate test
data [Xtest|ytest], Xtest ∈ R500×4, ytest ∈ {0, 1}500. In this simulation, we know
that the data originated from an LLR model with known coefficients β and,
therefore, we know the Bayes classifier and can use [Xtest|ytest] to estimate
the Bayes risk (see eq. 2.4):

P[CBayes(Xnew) 6= Ynew] = 0.075. (2.19)
2We assume a 0 intercept and don’t include it in the notation

12



2.1. Introduction

Throughout this section, we examine different ways to fit the LLR coefficients
β from the training data [X|y], and compare the obtained estimates, β̂, with
respect to criteria 1 and 2. A good fit would recover the irrelevance of the
predictors X·3 and X·4 and would pinpoint X·1and X·2 as relevant features, by
setting their corresponding coefficients, β̂1 and β̂2 to close non-zero values.

The maximum likelihood estimate is obtained by minimizing the negative
log-likelihood function. Figure 2.1 a) shows the contours of the negative log-
likelihood over the plane (β1, β2) for the fixed estimated values of β3 and β4.
Due to the small number of training data-points, the negative log-likelihood
surface is almost flat in a large area surrounding its minimum. This causes
high variance of the estimates β̂ as a function of the training data and poor
generalization performance on new data.

One way to deal with this problem is to introduce additional information
in the model fitting procedure, in order to prevent the “overfitting” effect,
by reducing the dependence of the estimate β̂ on the training data. This
approach, called regularization, is usually accomplished by incorporating a
prior distribution of the coefficients β. Assuming a known prior distribution
P[β], the Bayes theorem gives a formula for the posterior distribution of β:

P [β|X, y]︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P [X, y|β]

Prior︷︸︸︷
P[β]

P [X, y]︸ ︷︷ ︸
Evidence

(2.20)

The maximum a-posteriori (MAP) estimate of β, defined as

β̂MAP : = arg max
β

P [β|X, y] , (2.21)

= arg min
β

−`cond(β; [X|y]) + (− log(P[β]))︸ ︷︷ ︸
penalty

 (2.22)

can be estimated from the data, by neglecting the unknown constant term
P [X, y].

Table 2.1 summarizes some commonly used regularizing priors and Figure 2.1
illustrates their effect on the resulting negative log-posterior in the toy-
example.

13



2. Multi-Task Learning for Ordered Classification

Table 2.1: Common regularizing priors and their effect on the estimated coefficients β̂

Prior (P[β]) Penalty
(− log(P[β]))

Properties

Gaussian:
β ∼ N (0, σ2 I);

p(β) ∝ exp
(
− βT β

2σ2

)
parameter: λ2 := 1

σ2 ,
λ2 > 0.

Ridge (L2):
λ2
2 ‖β‖

2
2

Figure 2.1b,f.

Continuous shrinkage of β
towards 0 [Zou and Hastie,
2005];
Doesn’t select variables (keeps
all coefficients)

Laplace:
β ∼ Lap(0, τ I);
p(β) ∝ exp

(
− ‖β‖1

τ

)
parameter: λ1 := 1

τ ,
λ1 > 0

Lasso (L1):
λ1 ‖β‖1
Figure 2.1c,g.

Continuous shrinkage of β;
Selects variables, by setting
coefficients to 0;
In the case d > n, selects at most
n variables [Zou and Hastie,
2005];
Tends to select only one
arbitrary variable from a group
of highly correlated variables
[Zou and Hastie, 2005]
Performance dominated by
Ridge in the case d > n [Zou
and Hastie, 2005].

Gaussian×Laplace:
β ∼
1
ZN (0, σ2 I)Lap(0, τ I);

p(β) ∝ exp
(
− ‖β‖1

τ

)
parameters: λ1 := 1

τ ,
λ2 := 1

σ2 ,
λ1, λ2 > 0.

Elastic net
(L1+L2):
λ1 ‖β‖1 +

λ2
2 ‖β‖

2
2

Figure 2.1e,k.

Continuous shrinkage of β;
Selects groups of correlated
variables [Zou and Hastie, 2005];
Similar performance as Ridge in
all cases [Zou and Hastie, 2005];

Fusing Laplace:
(β− βr) ∼
Lap(0, τ I),
where βr :=
(β2, β3, ..., βn, β1)
p(β− βr) ∝

exp
(
− ‖β−βr‖1

τ

)
parameter: ν := 1

τ ,
ν > 0.

Fused lasso:
ν ‖β− βr‖1
Figure 2.1d,h,i,j,l.

Usefull when the variables are
ordered with expected
proximity between coefficients
for neighboring variables
Tibshirani et al. [2005];
“Pulls” β towards the identity
line, so that the coefficients
become close to each other and
often equal, without being
shrinked to 0.

14



2.1. Introduction

Figure 2.1: Equi-height contours of the (penalized) negative log-likelihood over the plane (β1, β2)
for fixed values of β3 and β4.

All models have been trained on the same set of 8 training points. The used penalizing
parameters λ1, λ2 and ν have been chosen with the aim to make the effect of the penalties
clearly visible, without aiming at the optimal prediction error-values. The coefficients β3 and
β4 are fixed to their optimal estimates, based on evaluation of the models on a discretized
subset of the hypercube [−1, 5]4. The height-difference between two contours is fixed, so
that denser positioned contours denote a steeper slope. Brighter blue color denotes a higher
value. a) unpenalized negative log-likelihood; b) ridge c) lasso; d) fusing L1 penalty; e) elastic
net (ridge+lasso); f) negative log-likelihood with a ridge penalty; g) negative log-likelihood
with a lasso penalty; h) negative log-likelihood with a fusing L1-penalty (note the pointed
contour lines at identity line); i) fused ridge penalty; j) fused elastic net penalty; k) elastic net
penalized negative log-likelihood; l) fused elastic net penalized negative log-likelihood;

For the toy-example, the minimal expected zero-one error on the test-set
[Xtest|Ytest] has been reached using the fused elastic net penalty with pe-
nalizing parameters λ1 = 0.3, λ2 = 0.1, ν = 0.2 and was equal to 0.9
(fig. Figure 2.1 l), compared to 0.14 for the unpenalized log-likelihood esti-
mate (fig. Figure 2.1 a), 0.12 for the ridge-and lasso-penalized estimates (fig.

15



2. Multi-Task Learning for Ordered Classification

Figure 2.1 f,g) and 0.11 for the elastic-net penalized estimate (fig. Figure 2.1
k). The optimal estimate of the coefficients for the fused elastic-net penalty
was β̂ = (1.25, 1.25, 0,−0.25). Apart from the power of regularization in
preventing overfitting, this example demonstrates the benefit from imposing
a fused penalty in the case when there is a prior belief about proximity of
coefficients associated with neighboring features. In section 2.2 we show how
we adapt this regularizing prior to the case of ordered multi-task logistic
regression.

2.1.4 Convex optimization for Classification

A major challenge in statistical modeling is to define a model that, on the one
hand, is well adaptable to the phenomenon of study, and on the other hand,
can be fit to the training data in an efficient way. In the case of model-fitting
via likelihood or posterior maximization, the fitting procedure reduces to an
optimization problem. One reason why linear models like linear regression,
LLR, LDA and their L2- and L1- regularized variants have gained popularity
is the fact that fitting these models to the training data results in having
to optimize a convex function. This section briefly describes two methods
for convex optimization that we will use for fitting models considered in
this thesis. Specifically, these comprise the Newton-Raphson’s method for
optimization of twice-differentiable functions, and the Alternating Direction
Method of Multipliers (ADMM) [Boyd et al., 2011], which is suitable for
decomposable objectives of the form f (x) + g(x). In section 2.2, we show
how we use these two methods for fitting the FENLR model.

The Newton-Raphson’s method for differentiable functions

The ridge-penalized negative log-likelihood from eq. (2.16) is convex and
twice differentiable. Therefore, finding its global minimum can be done
iteratively with quadratic rate of convergence using the Newton-Raphson’s
method. Starting from an initial guess a, this method makes successive
approximations to the root of a differentiable function f (x) by the use of its
first order Taylor approximation

f (x) ≈ f (a) +∇ f (a)(x− a).

By setting the left hand side to 0 and solving for x, one obtains an approxi-
mation x̂0 for the root x0 of f . Iterating over this step, by replacing a with
the current estimate x̂0, quickly approaches a root of f . Minimizing a con-
vex twice-differentiable function reduces to finding a root of its gradient.

16



2.1. Introduction

Algorithm 2.1 is a pseudo-code of the Newton-Raphson’s method in this
case:

Algorithm 2.1 Newton-Raphson’s method for optimizing a twice-
differentiable function
Input: twice-differentiable function f : Rd → R, x0 ∈ Rd, k = 0
do {

xk+1 := xk − (∇∇ f (xk))
−1 ∇ f (xk)

k := k + 1
} until convergence

In practice, the Newton-Raphson’s method can achieve convergence to very
high precision within 10 iterations. However, in the case d� 0, the inversion
of the d× d-dimensional Hessian matrix in each iteration can turn into a
serious performance bottleneck. Using the conventional method “solve” in R,
on a computer with 64 bit-3.1GHz Intel™(Core™) i7-processor, the inversion
of the Hessian matrix for d = 5000 takes ∼ 160s, compared to ∼ 1s for
d = 1000, and ∼ 0.15s for d = 500. If we ignore the costs for calculating the
gradient and the hessian, with d = 5000, a full 10 iteration Newton-Raphson’s
execution takes approximately 26 minutes. As we will see in the next sections,
we are about to use the Newton-Raphson’s procedure as a localized optimiza-
tion step, which makes part of a larger optimization algorithm, therefore,
accounting to numerous (possibly tens of thousands) Newton-Raphson’s
executions. An elegant approach to avoid the computational cost in this case
is shown in section 2.2.

The ADMM method

When there is a penalty-term on the L1 norm of its argument, the objective
function is no more differentiable and it is impossible to use the Newton-
Raphson’s method. Yet, if the objective function of the optimization problem
is still convex, there exist other efficient methods to solve it.

The Alternating Direction Method of Multipliers (ADMM) [Boyd et al., 2011]
is an iterative optimization algorithm, which provides a framework for
solving constrained optimization problems of the form:

min f (χ) + g(ζ)
subject to Pχ + Qζ = s

(2.23)

17



2. Multi-Task Learning for Ordered Classification

with variables χ ∈ Rn and ζ ∈ Rm, where P ∈ Rp×n, Q ∈ Rp×m and
s ∈ Rp.3One important property of ADMM, accounting for its broad appli-
cability, is that in order to guarantee convergence, it makes relatively loose
assumptions on the functions f and g. For instance, f and g need not to be
differentiable, and are allowed to accept the value +∞. In essence, ADMM
can be applied to any equality constrained convex optimization problem of
the general form

min F(ξ)
subject to Aξ = c

(2.24)

provided that it can be presented in the decomposed form (2.23) and the
following two assumptions hold [Boyd et al., 2011]:

Assumption 1. The (extended-real-valued) functions f : Rn → R∪ {+∞},
g : Rm → R∪ {+∞} are closed, proper and convex.

Assumption 2. The unaugmented Lagrangian, defined as the function

L0(χ, ζ, ω) := f (χ) + g(ζ) + ωT(Pχ + Qζ − s),

where ω ∈ Rp are the Lagrange multipliers, has a saddle point.

Without going into details, the first assumption ensures that we are dealing
with well behaved convex functions in the objective (see The ADMM method)
Boyd et al. [2011]. The second assumption sheds light on the underlying
principle of ADMM and its precursors, dual ascent and the method of
multipliers [Boyd et al., 2011, p.5-10]. Denoting θ := (χ, ζ), the dual function
for the unaugmented Lagrangian L0 is defined as

h(ω) := inf
θ

L0(θ, ω),

and the dual problem to problem (2.23) is defined as

max h(ω). (2.25)

A thorough study of the relations between the primal problem (2.23) and the
dual problem (2.25), and (2.25), has brought up conditions under which their
optimal values would match, and it would be possible to obtain the optimum
θ∗ from an optimal dual point ω∗, by solving

θ∗ := arg min
θ

L0(θ, ω∗). (2.26)

3Here we use a slightly modified notation from the original paper Boyd et al. [2011] with
the Greek analogs of the the letters ’x’ and ’z’ in order to avoid the conflict with the name ’x’
for predictor variables.

18



2.1. Introduction

The joint optimum (θ∗, ω∗) would then be a saddle point for the unaug-
mented Lagrangian, thus, justifying the requirement stated in Assumption 2.
In many cases, it is possible to find ω∗ in a “dual ascent” procedure, which
iteratively solves a localized version θk+1 := arg minθ L0(θ, ωk) of problem
(2.26) and finds a new candidate ωk+1 closer to the optimal ω∗, until sat-
isfying a convergence criterion. Solving (2.26) is done via another known
optimization technique. A further improvement to the idea of iterative con-
vergence to the optimal dual variable ω∗ is accomplished by the addition
of a penalty term, 1

2 ρ||Pχ + Qζ − s||22 to L0, where ρ > 0 is a penalizing
parameter. This results in the direct precursor of ADMM, the method of
multipliers, which replaces L0 by the augmented Lagrangian:

Lρ(χ, ζ, w) := f (χ) + g(ζ) + ωT(Pχ + Qζ − s) +
1
2

ρ||Pχ + Qζ − s||22.

In essence, using the augmented Lagrangian, Lρ instead of L0, improves the
robustness and ensures the convergence under less stringent assumptions for
the objective f + g. For example, the dual ascent method necessitates that
there is exactly one minimizer to L0(θ, ω∗), which can be ensured by strict
convexity of f + g. The method of multipliers, and consecutively, ADMM
doesn’t require strict convexity of its objective. This property makes it a
good candidate for solving problems with L1-norm terms on the coefficients,
which are not strictly convex in the case d� n [Tibshirani, 2013].

With the scaled dual variable ξ := ω/ρ, Algorithm 2.2 lists the general scaled
form of ADMM [Boyd et al., 2011].

Algorithm 2.2 ADMM (general scaled form)

Initialization: χ0 = ζ0 = ξ0 = 0; k = 0
do {
χ-update:χk+1 := arg minχ

(
f (χ) + 1

2 ρ||Pχ + Qζk − s + ξk||22
)

ζ-update: ζk+1 := arg minζ

(
g(ζ) + 1

2 ρ||Pχk+1 + Qζ − s + ξk||22
)

ξ-update: ξk+1 := ξk + Pχk+1 + Qζk+1 − s
k = k + 1
} while(k < MAXITER and not converged)

ADMM owes its name to its direct precursor, the method of multipliers, and
the alternating way in which it optimizes the localized augmented Lagrangian.
As we saw, ADMM works at a higher level of abstraction, compared to other

19



2. Multi-Task Learning for Ordered Classification

optimization algorithms like Newton-Raphson. While the Newton-Raphson’s
gradient descent algorithm iterates over basic calculus operations, such as the
calculation of a gradient vector and a hessian matrix, the iterative operations
in ADMM are small localized optimizations tasks, which are orchestrated
in a way, that, under some assumptions, leads to the optimum of a large
global problem. The localized optimization tasks can usually be solved by
lower-level optimization procedures, or even analytically.

2.1.5 A brief overview of multi-task learning

Any multi-task learning (MTL) procedure aims at improving the performance
of some set of individual learning tasks by using additional information,
encoded in the relatedness between these tasks. Examples of tasks that could
be approached from the MTL point of view are (i) inference of clinical scores
at different time-points in modeling disease progression [Zhou et al., 2013], (ii)
recognition of spam e-mails in different demographic groups [Attenberg et al.,
2009], (iii) identification of host-pathogen protein interactions in different
infectious diseases [Kshirsagar et al., 2013], (iv) modeling of marketing
preferences of similar social groups [Evgeniou and Micchelli, 2005] and many
others. A more detailed view of the examples above suggests that most of
the MTL problems fall in one of the two categories:

1. Multiple similar learning problems share the same data. This is the case
for example (i), where the training data for all tasks has the same design
matrix corresponding to an initial state of the diseased patient, while
the response vectors for every task corresponds to different time-points
in the progression of the disease.

2. A single learning problem has to be solved in multiple similar data-
domains. This is the case for examples (ii), (iii) and (iv). In each of
them, the training examples come from multiple data-sources with
similar or identical sets of features.

A challenge that is present for problems in both categories is the incorporation
of the task relatedness topology in the MTL model. A straightforward way to
express task relatedness is to produce a graph with weighted edges, in which
every node is associated with an individual task and the weight on each
edge quantifies the estimated pairwise relatedness between its corresponding
task-nodes. Let R ∈ ({0} ∪R+)t×t be the adjacency matrix corresponding to
the task relatedness topology of t individual tasks. Let B := [β(1), ..., β(t)] ∈
R(1+d)×t be the coefficient matrix for these tasks and let Lk(β(k)) be the

20



2.1. Introduction

loss function associated with each task, for example Lk can be taken to be
the negative log-likelihood. One way to learn the tasks simultaneously by
encouraging similarity between related tasks is to solve [Zhou et al., 2011]:

B̂ := arg min
B

t

∑
k=1
Lk(β(k)) + ||BR||2F, (2.27)

where || · ||F is the L2 (Frobenius) matrix norm. As the added penalty in the
above optimization task is twice differentiable, the computational complexity
would in most cases be dominated by the sum of the individual task’s loss
functions.

In subsection 2.1.3, we saw that a fused lasso penalty can “pull” consecutive
coefficients in a single-task model towards the identity line, so that they
become close to each other and often equal. This variable “fusion” approach,
which has been introduced by Land and Friedman [1996] and later popular-
ized by Tibshirani et al. [2005], can be transferred to the domain of multi-task
learning in order to induce sparsity in the difference of coefficient vectors
associated with pairwise related tasks. Specifically, one can replace the Frobe-
nius norm with the L1 norm in eq. (2.27) to obtain a fused lasso penalized
MTL fit in the form

B̂ := arg min
B

t

∑
k=1
Lk(β(k)) + ||BR||1. (2.28)

The optimization problem (2.28) is hard to solve in general, due to the non-
differentiability and possible not strict convexity of the L1 penalty term.
However, efficient solutions exist in the more specific case of acyclic hier-
archical topology of the task relatedness, like linear ordering in the case of
modeling consecutive time-points in a disease-progression [Zhou et al., 2013]
or phylogenetic tree of evolutionary close species [Widmer, 2012]. Another
example, in which problem (2.28) can be solved efficiently is the FENLR
model described in (section 2.2) where the tasks are linearly and cyclically
ordered with L1-penalized absolute difference between neighboring tasks.

An additional challenge, that occurs in MTL problems of the second category,
is to unify the feature-sets between the data-domains associated with different
tasks. For instance, in a genomic study of temporal disease dynamics, where
different tasks are associated with microarray data from different species, it
might be challenging to produce a homology mapping between the genes of
the different species.

21



2. Multi-Task Learning for Ordered Classification

In any case an MTL approach to solve a set of individual learning tasks
would introduce an additional level of complexity to the model and, there-
fore, it is important to predict in advance to what extent would an MTL
solution improve the individual-task’s generalization performance. Widmer
[2012] provides guide lines on deciding whether an MTL approach would be
beneficial, depending on the observed task similarity and the saturation of
the learning curve as function of the amount of training examples for each
individual task.

2.2 The fused elastic net logistic regression (FENLR)
method for ordered binary classification

We consider a set of t ordered binary classification tasks, 1, ..., t, on a set
of n d-dimensional labeled training observations {x1, ..., xn} ⊂ R1+d, with
xi1 = 1, i = 1, .., n. The order of the tasks reflects their similarity. For
instance, neighboring tasks should be more likely to assign the same label
to a test observation, compared to tasks that are ordered far from each
other. The training data for all tasks is encoded in the matrix [X|Y], where
X = [x1, ..., xn]T ∈ Rn×(1+d) is the common design matrix shared by all tasks4,
and the response vector for task j is written as the column-vector yj = Y·j of
the matrix Y = [y1, ..., yt] ∈ {−1, 1}n×t, j = 1, ..., t. We define a single-task
LLR model for task j = 1, ..., t with training data [X|yj] as:

logit(π(j)(x)) ≈ xT β(j) =: g(j)(x), (2.29)

where π(j)(xi) := P[Yij = 1|x] is the probability that the true label of the
observation x is 1, and β(j) ∈ R1+d are the LLR coefficients. The negative
log-likelihood is defined in the same way as in eq. (2.15):

−`(j)(β(j); [X|yj]) = ∑ log
(

1 + exp(−yj � Xβ(j))
)

, j = 1, ..., t. (2.30)

As we saw in the introduction section, minimizing an L1-L2-penalized version
of the negative log-likelihood leads to sparse solutions keeping non-zero coef-
ficients for the relevant sets of correlated feature-vectors. This idea reduces to
a single-task fitting procedure, in which we find the L1-L2 penalized estimate
of the coefficients by consecutively solving the optimization problems

β(j)∗ := arg min
β(j)∈R(1+d)

{
−`(j)(β(j); [X|yj]) + ||λ1 � β(j)||1 +

1
2
||λ2 � β(j)||22

}
(2.31)

4Assume that the first column of the design matrix X is the constant vector 1.

22



2.2. The fused elastic net logistic regression (FENLR) method for ordered binary
classification

for j = 1, .., t. A small detail of this formulation is that we have presented
the regularizing parameters λ1 > 0 and λ2 > 0 as real vectors of the form
λ1 = (0, λ1, ..., λ1) ∈ R1+d and λ2 = (0, λ2, ..., λ2) ∈ R1+d, in order to account
for the usually unpenalized intercept β

(j)
0 .

Now we wish to incorporate the prior knowledge about the similarity be-
tween neighboring tasks into the model-fitting procedure. An important
observation, which directly follows from the continuity of the modeling func-
tion in 2.8, is that two LLR-models operating on the same data would produce
similar output if their coefficients were similar. Therefore, similarity between
neighboring LLR models for neighboring tasks can be encoded by penalizing
the difference between their coefficients. Let B := [β(1), ..., β(t)] ∈ R(1+d)×t be
the coefficient matrix for all tasks and let R ∈ Rt×t be a matrix defined in the
following way:

Rij :=

{
1 if j = i− 1 or (i, j) = (1, t)
0 otherwise

, i, j = 1, ..., t.

We call R the column-rotating matrix for B, because the columns of the
(1 + d)× t-matrix BR are the same as the columns of B, but rotated by 1
column to the left, in other words, BR = [β(2), β(3)..., β(1)] ∈ R(1+d)×t. Let
ν ≥ 0 be a penalizing parameter. Denote by [·] the (1 + d)× t-matrix with
all columns equal to a vector ·, by [ν] the (1 + d)× t-matrix, each element of
which is equal to ν, and by I the t× t-dimensional identity matrix. We define
the multi-task fused L1-L2-penalized negative log-likelihood as the function:

−`MT(B; [X|Y]) := −
t

∑
j=1

`(j)(β(j); [X|yj]) (2.32)

+
t

∑
j=1

(
||λ1 � β(j)||1 +

1
2
||λ2 � β(j)||22

)
(2.33)

+||[ν]� B(I − R)||1 (2.34)

= ∑ log
(
[1] + exp(−Y� XB)

)
(2.35)

+||[λ1]� B||1 +
1
2
||[λ2]� B||22 (2.36)

+||[ν]� B(I − R)||1 (2.37)

The first formulation shows that if the penalizing parameter ν is set to 0, the
optimizing `MT with respect to B can be split across the columns of B, and

23



2. Multi-Task Learning for Ordered Classification

is equivalent to the single-task optimization with elastic net penalty (2.31).
The fusing L1 penalty (2.37) represents a scaled sum of absolute differences
between each pair of consecutive columns of B and cannot be decomposed
column-wise. The maximum likelihood fit of the parameters B to the training
data [X|Y] is found by solving the optimization problem

B∗ = arg min
B∈R(1+d)×t

−`MT(B; [X|Y]). (2.38)

As a sum of convex functions, the function `MT is also convex but, due to the
presence of L1-terms, it is not differentiable and, therefore, not solvable by
gradient descent methods. Through the rest of this section, we show one way
to solve this problem numerically by adapting it to the modular framework
of the ADMM algorithm described in section section 2.1.4.

To begin, we convert problem (2.38) to the canonical ADMM-form (2.23)
by introducing the variable matrices χ ∈ R(1+d)×t and ζ ∈ R(1+d)×t, and
separating the differentiable from the non-differentiable terms:

min ∑ log
(
[1] + exp(−Y� Xχ)

)
+

1
2
||[λ2]� χ||22︸ ︷︷ ︸

=: f ( χ )

(2.39)

+

||[λ1]� ζ||1 + ||[ν]� ζ(I − R)||1︸ ︷︷ ︸
=: g ( ζ )

subject to χ− ζ = [0]

Alternatively, it is possible to decompose problem (2.38) into a constrained

sum of three functions, f̃ (χ
◦
) + g̃ (Υ) + h̃(

◦
ζ) of the augmented variable matri-

24



2.2. The fused elastic net logistic regression (FENLR) method for ordered binary
classification

ces χ
◦

:=
[

χT

0t×(1+d)

]
2t×(1+d)

, Υ :=
[

ζT

ζT

]
2t×(1+d)

and
◦
ζ :=

[
0

(I − RT)ζT

]
2t×(1+d)

:

min ∑ log
(
[1] + exp(−Y� Xχ

◦
T)
)
+

∥∥∥∥1
2

[
[λ2]

0(1+d)×t

]
� χ
◦

∥∥∥∥2

2︸ ︷︷ ︸
=: f̃
(

χ
◦

)
(2.40)

+∥∥∥∥[ [λ1]
T

[λ1]
T

]
� Υ

∥∥∥∥
1︸ ︷︷ ︸

=: g̃ (Υ )

+

∥∥∥∥[ 0t×(1+d)
[ν]T

]
�
◦
ζ

∥∥∥∥
1︸ ︷︷ ︸

=: h̃
(
◦
ζ

)
subject to

[
I 0
0 I

]
χ
◦
+

[
−I 0
0 −I

]
Υ +

[
0 0
0 (It×t − RT)−1

] ◦
ζ =

[
0t×(1+d)
0t×(1+d)

]
.

Due to time constraints, an ADMM implementation, based on the formula-
tion in (2.40) has not been considered. However, it might be interesting to
implement it in the future, because it would reduce the recursive nesting of
iterative optimization procedures (see Second level ADMM for the ζ-update).

The scaled form of the ADMM algorithm for problem (2.39) is given in (2.2):

Algorithm 2.3 ADMM for `MT

Initialization: χ0 = ζ0 = ξ0 = [0](1+d)×t;k := 0
do {
χ-update:χk+1 := arg minχ

(
f (χ) + 1

2 ρ||χ− ζk + ξk||22
)

ζ-update: ζk+1 := arg minζ

(
g(ζ) + 1

2 ρ||χk+1 − ζ + ξk||22
)

ξ-update: ξk+1 := ξk + χk+1 − ζk+1

k := k + 1
} while(k < MAXITER and not converged )

The convergence criterion is straightforward to implement, following the
instructions in Boyd et al. [2011, p. 16-17].

In the next two subsections, we describe the χ-update and the ζ-update.

25



2. Multi-Task Learning for Ordered Classification

Newton-Raphson gradient descent procedure for the χ-update

For the χ-update, we notice that there is no coupling between the columns of
the variable matrix χ. Therefore, it is computationally more convenient to
obtain χk+1 by solving separately for j = 1, ..., t :

χk+1
·j := arg min

χ·j

{
log
(

1 + exp(−Y·j � Xχ·j)
)
+

1
2
||λ2 � χ·j||22 +

1
2

ρ||χ·j −Ωk
·j||22
}

︸ ︷︷ ︸
f̃ k(j)(χ·j)

.

(2.41)
To shorten the expressions, in the above equation, we substitute the constant
ζk
·j − ξk

·j, by the symbol Ωk
·j.

The function f̃ k(j)(χ·j) is twice differentiable and convex and, therefore, can
be optimized efficiently using the Newton-Raphson’s method. By means of
vector calculus, we find analytical expressions for the gradient and hessian
of f̃ k(j):

R1+d 3 ∇ f̃ k(j)(χ·j) = XTδ(χ·j) + η(χ·j) (2.42)

R(1+d)×(1+d) 3 ∇∇ f̃ (j)(χ·j) = ([w]� X)T ([w]� X) + (λ2 + ρ)T I, (2.43)

where

Rn 3 δ(χ·j) :=
[
−Y·j � exp(−Y·j � Xχ·j)

]
÷
[
1+ exp(−Y·j � Xχ·j)

]
, (2.44)

R1+d 3 η(χ·j) := (λ2 + ρ)� χ·j − ρΩk
·j, (2.45)

Rn 3 w :=
√

exp(−Y·j � Xχ·j)÷ [exp(−Y·j � Xχ·j)]. (2.46)

The symbol ′÷′ denotes element-wise division between its vector operands
and I denotes the identity matrix. Now, all that remains is to insert the
expressions for the gradient and the hessian into Algorithm 2.1.

We noticed in section 2.1.4 that for large number of covariates, d, the inversion
of the hessian matrix in the Newton-step risks to become computationally
challenging. It turns out, that we can solve this optimization problem by only

26



2.2. The fused elastic net logistic regression (FENLR) method for ordered binary
classification

considering tractable inversions of n−dimensional matrices [van Houwelin-
gen et al., 2006, Goeman, 2010]. We know that at the global minimum χ∗·j of

f̃ k(j) the gradient (2.42) should vanish. Setting (2.42) to the vector 0 reveals
that there exists an n-dimensional real vector γ∗j := −δ(χ∗·j), such that

XTγ∗j = η(χ∗·j) = (λ2 + ρ)� χ∗·j − ρΩk
·j. (2.47)

The two equations below follow directly from (2.47):

χ∗·j = (XTγ∗ + ρΩk
·j)÷ (λ2 + ρ) (2.48)

γ∗j = (XXT)−1X
(
(λ2 + ρ)� χ∗·j − ρΩk

·j

)
(2.49)

Equation (2.48) shows that χ∗·j lays in an n-dimensional space. Let h : Rn →
Rd and h−1 : Rd → Rn be the following two (mutually inverse) functions:

h(γ) : = (XTγ + ρΩk
·j)÷ (λ2 + ρ) (2.50)

h−1(χ) : = (XXT)−1X
(
(λ2 + ρ)� χ− ρΩk

·j

)
(2.51)

The following theorem will form the basis of defining an optimization prob-
lem over an n−dimensional variable whose optimum can be used to unam-
biguously reconstruct the d−dimensional solution the initial problem.

Theorem 2.1 Let the function φk(j) : Rn → R be defined as:

φk(j)(γ) := f̃ k(j)(h(γ)).

χ∗ is the global minimum of f̃ k(j) if and only if γ∗ := h−1(χ∗) is the global
minimum of φk(j).

It follows from Theorem 2.1 that the minimization problem (2.41) can be
solved by minimizing the n -dimensional function φk(j), and setting

χk+1
·j := h

(
arg min

γ∈Rn
φk(j)(γ)

)
. (2.52)

Minimizing the function φk(j) is done again by the Newton-Raphson’s method
using the following analytical expressions for the gradient and hessian:

27



2. Multi-Task Learning for Ordered Classification

X̃ := X÷
[√

λ2 + ρ
]T

,

Ω̃k := Ωk ÷
[√

λ2 + ρ
]

,

Ψk(j)(γ) := exp
(
−Y·j � X̃X̃Tγ− ρY·j � X̃Ω̃k

·j

)
,

wj(γ) :=
(

Y·j �
√

Ψk(j)(γ)

)
÷
(

1 + Ψk(j)(γ)
)

,

∇φk(j)(γ) = X̃X̃T
((
−Y·j �Ψk(j)(γ)

)
÷
(

1 + Ψk(j)(γ)
))

+ X̃X̃Tγ,

∇∇φk(j)(γ) :=
(

wj(γ)� X̃X̃T
)T (

wj(γ)� X̃X̃T
)
+ X̃X̃Tγ.

Second level ADMM for the ζ-update

In the sequel of this section we will rely on a fact, known from subdifferential
calculus [Boyd et al. [2011, p. 30],Rockafellar [1997, §23]]. For κ ∈ R, κ ≥ 0
and any real number a, the soft thresholding operator, Sκ, is defined as:

Sκ(a) :=


a− κ a > κ

0 |a| ≤ κ

a + κ a < −κ,

or equivalently,
Sκ(a) := (a− κ)+ − (−a− κ)+.

Theorem 2.2 Let λ, ρ > 0, x is a real variable and v is some real constant. The
optimiaztion problem

x∗ := arg min
x

(
λ|x|+ (ρ/2)(x− v)2)

has the closed-form solution
x = Sλ/ρ(v).

28



2.2. The fused elastic net logistic regression (FENLR) method for ordered binary
classification

The ζ-update is:

ζk+1 := arg min
ζ

(
||[λ1]� ζ||1 + ||[ν]� ζ(I − R)||1 +

1
2

ρ||ζ −Ω||22
)

, (2.53)

where λ1 ∈ R1+d, ν ∈ R1+d, ζ, χk+1, ξk ∈ R(1+d)×t, (I − R) ∈ Rt×t, [·] ∈
R(1+d)×t denotes the matrix with t columns, equal to the (1 + d)-dimensional
vector ·, and Ω := χk+1 + ξk. Due to the two L1-norms, the objective function
is not differentiable and, unlike the case in the χ-update, it is not column-wise
decomposable. Again, we use ADMM, to solve problem (2.53) numerically.
Because the objective function remains invariant with respect to transposition,
we can write problem (2.53) as well:

(ζk+1)T := arg min
ζT

(
||[λ1]

T � ζT||1 + ||[ν]T � (I − R)TζT||1 +
1
2

ρ||ζT −ΩT||22
)

(2.54)

Defining the two variables
◦
χ := ζT and

◦
ζ := (I − R)TζT, we present (2.54) in

the canonical ADMM form 2.23 as:

min
◦
f (
◦
χ) +

◦
g(
◦
ζ)

subject to (I − R)T ◦χ−
◦
ζ = [0]t×(1+d),

(2.55)

where
◦
f (
◦
χ) := ||[λ1]

T � ◦χ||1 + 1
2 ρ|| ◦χ−ΩT||22 , and

◦
g(
◦
ζ) := ||[ν]T �

◦
ζ||1. The

scaled-form ADMM for is given in Algorithm 2.4

Iterative smooth thresholding for the
◦
χ-update

The
◦
χ-update is:

◦
χ

k+1
:= arg min

◦
χ

(
||[λ1]

T � ◦χ||1 +
1
2

ρ|| ◦χ−ΩT||22 +
1
2
◦
ρ||(I − R)T ◦χ−

◦
ζ

k
+
◦
ξ

k
||22

)
(2.56)

We notice that the problem (2.56) is column-wise decomposable, meaning
that we can split it into subproblems of the form

◦
χ

k+1
·l := arg min

◦
χ·l

(
||[λ1]

T
·l �

◦
χ·l ||1 +

1
2

ρ|| ◦χ·l −ΩT
·l ||22 +

1
2
◦
ρ||(I − R)T ◦χ·l −

◦
ζ

k

·l +
◦
ξ

k

·l ||22

)
(2.57)

29



2. Multi-Task Learning for Ordered Classification

Algorithm 2.4 ADMM (general scaled form)

Initialization:
◦
χ

0
=
◦
ζ

0
=
◦
ξ

0
= [0]t×(1+d); k = 0

do {
◦
χ-update:

◦
χ

k+1
:= arg min ◦

χ

(
◦
f (
◦
χ) + 1

2
◦
ρ||(I − R)T ◦χ−

◦
ζ

k
+
◦
ξ

k
||22

)
◦
ζ-update:

◦
ζ

k+1
:= arg min◦

ζ

(
◦
g(
◦
ζ) + 1

2
◦
ρ||(I − R)T ◦χ

k+1
−
◦
ζ +

◦
ξ

k
||22

)
◦
ξ-update:

◦
ξ

k+1
:=
◦
ξ

k
+ (I − R)T ◦χ

k+1
−
◦
ζ

k+1

k = k + 1
} while(k < MAXITER and not converged)

The term (I− R)T ◦χ represents the t× (1+ d)-dimensional matrix, the jth row
of which represents the row-vector difference5

( ◦
χj · −

◦
χ(j+1) ·

)
. Because of

this coupling between consecutive rows of
◦
χ, problem 2.56 cannot be row-

decomposed. In addition, gradient descent methods like Newton-Raphson
are not applicable in the presence of L1-norm terms. Therefore, we use a
coordinate descent approach for solving problem (2.57) for l = 1, ..., 1 + d. To
find a minimum of a function using coordinate descent, in every iteration,
one searches a minimum along one coordinate direction from the current
point, considering all other coordinates as constants. Every next iteration
uses a different coordinate direction cyclically throughout the procedure.
In terms of convergence rate, completing one cycle along all directions is
equivalent to one gradient descent iteration.

Let
◦
χ·l be the current estimate of

◦
χ

k+1
·l from (2.57), and let j ∈ {1, ..., t}. After

eliminating constant terms from rows far away from j, a coordinate descent

5In the case j = t, j + 1 should be thought of as 1.

30



2.2. The fused elastic net logistic regression (FENLR) method for ordered binary
classification

step for the jthelement of
◦
χ·l consists in solving

◦
χ
+

jl := arg min ◦
χjl
||λ1l

◦
χjl ||1 +

1
2

ρ|| ◦χjl −Ωl j||22

+
1
2
◦
ρ|| − ◦χjl +

( ◦
χ(j−1)l −

◦
ζ

k

(j−1)l +
◦
ξ

k

(j−1)l
)︸ ︷︷ ︸

◦
Ω(j−1)l

||22

+
1
2
◦
ρ|| ◦χjl −

( ◦
χ(j+1)l +

◦
ζ

k

jl −
◦
ξ

k

jl
)︸ ︷︷ ︸

◦
Ωjl

||22

= arg min ◦
χjl

λ1l |
◦

χjl |+
1
2

ρ
( ◦

χjl −Ωl j

)2

+
1
2
◦
ρ

( ◦
Ω(j−1)l −

◦
χjl

)2

+
1
2
◦
ρ

(
◦
χjl −

◦
Ωjl

)2

= arg min ◦
χjl

λ1l |
◦

χjl |+
ρ + 2

◦
ρ

2

 ◦χjl −
ρΩl j +

◦
ρ
◦
Ω(j−1)l +

◦
ρ
◦
Ωjl

ρ + 2
◦
ρ

2

.(2.58)

By denoting κjl := ρ+2
◦
ρ

2 and ajl :=
ρΩl j+

◦
ρ
◦
Ω(j−1)l+

◦
ρ
◦
Ωjl

ρ+2
◦
ρ

and using Theorem 2.2,

we find:
◦
χ
+

jl = Sκjl (ajl).

To find
◦
χ

k+1
·l , we repeat the same step, letting the index j to iterate cyclically

over the {1, ..., t} until satisfying a convergence criterion for the difference in
the objective function between two complete cycles.

Smooth thresholding for the
◦
ζ-update

The
◦
ζ-update is:

◦
ζ

k+1
:= arg min

◦
ζ

(
||[ν]T �

◦
ζ||1 +

1
2
◦
ρ||(I − R)T ◦χ

k+1
−
◦
ζ +

◦
ξ

k
||22

)
. (2.59)

31



2. Multi-Task Learning for Ordered Classification

This problem is column- and row-decomposable and can easily be solved for

each element of
◦
ζ

k+1
by smooth thresholding (Theorem 2.2):

◦
ζ

k+1

jl = S
ν/
◦
ρ

(
◦
χ

k+1
jl −

◦
χ

k+1
(j+1)l +

◦
ξ

k

jl

)
, j = {1, ..., t}, l = {1, ..., 1 + d}. (2.60)

2.3 Experiments with synthetic data-sets

We tested the FENLR model on a number of synthetic data-sets, which we
produced in the following way:

1. Fix values for the regularizing parameters λ1, λ2 and ν and sample a
coefficient matrix B ∈ R100×8, where each row has been sampled from
the corresponding prior distribution:

Bi,1 ∼ N
(

0,
1

λ2

)
× Lap

(
0,

1
λ1

)
; k = 2, ..., 8

(Bi,k − Bi,k−1) ∼ N
(

0,
1

λ2

)
× Lap

(
0,

1
λ1

I
)
× Lap

(
0,

1
ν

)
,

for i = 1, ..., 100.

2. Then, generate a design matrix X ∈ R3000×100 from a uniform distribu-
tion and calculate the probabilities π for each observation.

3. Finally, draw the corresponding response vector from a Bernoulli dis-
tribution (coin-tossing) with the corresponding probability π for every
observation in X.

Using the above procedure, we generated families of 20 data-sets for 18
different combinations of regularizing parameters simulating the Cartesian
product of the following scenarios for each regularizer:

• λ1 : non-sparse (1.5); intermediate (3.5); sparse (6.5);

• λ2 : small (0); big (6);

• ν : non-sparse (0); intermediate (4); sparse (8).

With each of the 20 training data-sets for a given combination of meta-
parameters, we evaluated the performance of the following five models:

• FENLR

• ENLR (single task elastic net logistic regression)

32



2.3. Experiments with synthetic data-sets

• FENLR with the predefined regularizing parameter values;

• Random Forest (used R package “RandomForest”);

• Ada Boost with 200 iterations (used R package “ada”).

Instead of performing a costly cross-validation for optimal meta-parameter
selection, we reserved a single validation set containing 1400 observations
and a single test set containing other 1400 observations.

Figure 2.2 represents comparative results on two meta-parameter combina-
tions with different number of training observations (25, 50, 100 and 200) and
Figure 2.3 shows the histogram of the selected meta-parameter values.

It can be seen from these results, that the FENLR model tends to outperform
single-task learning models, particularly when there is high similarity of
the neighboring tasks (bigger values of the parameter ν). In most cases, the
the parameter ν is estimated at values, that are lower than the original ones,
particularly when the number of training data-points, N, is small. It is also
noticeable that most models achieve optimal validation error for large values
of λ2 and small values of the other regularizing parameter λ1. This can be
explained with the fact that the original model (true values of the coefficients
B) contains many small but non-zero values, while the L1 penalty imposes
sparsity on the coefficient estimates.

33



2. Multi-Task Learning for Ordered Classification

Figure 2.2: Comparison of estimated expected prediction L01 error for different models trained
on synthetic data-sets.

The values of the regularizing parameters λ1, λ2 and ν are given in parentheses. Every
box-whisker represents the average test-set L01 error on a test-set of 1400 observations.

34



2.3. Experiments with synthetic data-sets

Figure 2.3: Histograms of estimated optimal regularizing parameters

a) original regularizing meta-parameters: λ1 = 3.5, λ2 = 0, ν = 8.

a) originial regularizing meta-parameters: λ1 = 1.5, λ2 = 6, ν = 4.

35





Chapter 3

Inference of post-infection time from
infected murine gene-expression data

In this chapter we consider different supervised learning formulations of the
problem of genome based post-infection time inference in malaria-infected
organisms. For each formulation, we define a model, which we test and eval-
uate with respect to its accuracy of prediction on new data and interpretation
capacity. All described models have been trained on data obtained from
an Illumina Inc. bead-chip microarray experiment, including 78 samples1

from three malaria-infected mice, collected over a period of 26 days after the
infection and ten control samples taken from healthy mice.

It is important to note that all three infected mice recovered from the disease
and that there is a well pronounced similarity between gene-expression
profiles for the initial days of infection (i.e. days 1, 2, 3, ...), and profiles for
the final days (i.e. ..., 24, 25, 26) and controls (day 0). This observation justifies
a representation of the post-infection time as a circular axis and we denote
this axis by T (Figure 3.1).

1Unless specified otherwise, throughout this chapter, by the word “sample” we will mean
a d−dimensional numerical vector representing gene-expression intensities measured in one
Illumina-bead chip microarray.

37



3. Inference of post-infection time from infected murine gene-expression

data

Figure 3.1: The circular time-axis T, representing the post-infection time of an organism, which
recovered fully from the disease.

In blue color: the time window w(23,6).

3.1 Classification formulation

In a classification formulation, we consider the training data as realizations
from 2

(X1, Y1), ..., (Xn, Yn) i.i.d. ,

where the predictor or feature vector Xi ⊂ Rd, i = 1, ..., n, are random gene-
expression profiles and the response vector Y = (Y1, ..., Yn) ⊂ {0, 1, ..., 26}n

denotes the corresponding post-infection times 3. A predictor is defined as a
function of the form:

P : Rd → T.

We call the value P(x) for an expression profile x the predicted post-infection
time, and define the prediction loss function of P as the expected difference
on T between the predicted and true post-infection time:

L(P) := EX[Y	P(X) |X], (3.1)

where the operation 	 denotes the difference operation on T, defined as the
minimal number of days separating two points on T, for example, 23	 2 =
2	 23 = 6, 12	 23 = 23	 12 = 11 (Figure 3.1).

In the two subsections below we denote the training data by [X|y], where
X ∈ Rn×(1+d) is the design matrix, and y ∈ Tn is the corresponding observed

2Note however, that the independence assumption is violated in the case of training
observations taken from the same mouse case, which is inevitable in the case of 3 infected
mice.

3The label 0 denotes a control sample

38



3.1. Classification formulation

response vector. The goal is to find a predictor P , which minimizes the
prediction loss function.

3.1.1 The k-Nearest Neighbor Predictor

The k-nearest neighbor algorithm (k-NN) is a non-parametric method for
classifying objects based on closest training examples in the feature space.
Let δ(·, ·) be an arbitrary distance function defined on Rd+1. Considering the
design-matrix X, the k-Neighborhood of a training feature vector x is defined
as the set of the closest k training feature vectors to x with respect to the
distance δ and is denoted as Nk(x; X, δ). The k-nearest neighbor predictor is
defined as

PkNN(x; [X|y], δ) := arg max
y∈T

∑
i∈Nk

1[y = yi] (3.2)

with the remark that in the case of non-unique maximum in the above
formula, the response is selected by randomly selecting one of the optimal
candidate classes.

In the case of very limited number of infected training samples, our choice of
the parameter k was limited to k = 1 and, after comparison with some other
distance metrics, we selected the Euclidean norm of a vector difference as
our preferred distance metric.

3.1.2 The aggregated time-window predictor (ATWINP)

Let t := |T| be the total number of days. A time-window w(jl) of length l < t
and starting from day j is defined as the ordered sequence of l consecutive
days on T, starting from day j. For example w(1,5) := {1, 2, 3, 4, 5}, and
w(22,6) := {22, 23, 24, 25, 26, 0}. Consider all t overlapping time-windows of a
fixed number of days l < t. For instance with l = 3, these would be:

w(0,3) w(1,3) ..................... w(24,3) w(25,3) w(26,3)

0 1 ..................... 24 25 26
1 2 ..................... 25 26 0
2 3 ..................... 26 0 1

Let x be a gene-expression sample. For a fixed window length l ∈ {1, ..., t− 1}
and for each time window w(jl), j ∈ T, denote by W(jl)(x) the probability
that the post-infection time of x is in the window w(jl):

W(jl)(x) := P[Y ∈ w(jl)|X = x].

39



3. Inference of post-infection time from infected murine gene-expression

data

Denote by y(jl) ∈ {0, 1}n the appurtenance of each element of the known
response vectory in the window w(jl):

y(jl) := 1(y ∈ w(jl)).

Let for j ∈ T, Ŵ(jl)(x), be an estimator of the above probability W(jl)(x),
obtained by training on the data binary classification data [X|y(jl)].

The ATWINP predictor for the estimators Ŵ(jl)(x) is defined as follows:

PATWINP

(
x; Ŵ(·l)

)
:= arg max

y∈T

t−1

∑
j=0

{
Ŵ(jl)(x)

l
1[y ∈ w(jl)] +

1− Ŵ(jl)(x)
t− 1− l

1[y /∈ w(jl)]

}
.

(3.3)

3.2 Regression formulation

In a regression approach, we assume that the post-infection time can be
modeled as a continuous function of the gene-expression profile:

f : Rd → [0, 26] ⊂ R

Again, we consider the training data as realizations from

(X1, Y1), ..., (Xn, Yn) i.i.d. ,

where the predictor or feature vector Xi ⊂ Rd, i = 1, ..., n are random
gene-expression profiles, but unlike classification, the response vector Y =
(Y1, ..., Yn) ⊂ [0, 26]n is a real vector with the property:

Yi = f (Xi) + εi, i = 1, .., n,

where εi are i.i.d. realizations from ε ∼ N (0, σ2). Because E[ε] = 0, the value
f (x) equals the expected value of Y given a sample x, i.e. f (x) = E[Y|x]. If f̂
is a given estimate of f , we define a predictor of the post-infection time from
a sample x as:

P f̂ (x) := b f̂ (x) eT,

where b·eT denotes the nearest integer to the real number ·, found in T.

There are different parametric and non-parametric approaches to find an
estimate of f . In the case d� n, we consider regularized linear regression as

40



3.3. Comparative model evaluation based on mouse and human data

the most promising approach. In its simplest form, linear regression assumes
that f is a linear function of the predictor variables:

f (x) = β0 + xT β,

where β0 ∈ R and β ∈ Rd. Further, we will omit the intercept β0 from the
notation, assuming that β, x ∈ R1+d with x1 = 1.

To find a fit of the model coefficients, β to the data [X|y], we used the R-
package “penalized” [Goeman, 2010] which provides a MAP estimator with
elastic net regularizing prior.

3.3 Comparative model evaluation based on mouse and
human data

All described models have been trained on an Illumina Inc. bead-chip
microarray data-set including 78 samples from three malaria-infected mice,
collected over a period of 26 days after the infection and ten control samples
taken from healthy mice. Specifically, we designed two data-sets:

• “Mouse” containing measurements of 5757 gene-expression levels in 88
mouse-samples (78 infected and 10 control samples; see subsection A.1.1);

• “Mouse-Human” containing measurements of 2589 gene-expression
levels in 243 samples (88 mouse, 94 infected human, 59 control human),
which was obtained after homology mapping between the mouse data
and a data-set of Illumina microarray samples from malaria-infected
human patients (see section A.1 and Idaghdour et al. [2012] for further
details).

To estimate the prediction error (3.1), we performed 3-fold “leave-one-mouse-
out” cross validation. In every cross-validation fold, we trained one of the
models on all samples from two of the infected mice and 6 of the control
mouse-samples, leaving the infected samples from the other mouse and the
remaining control-samples as a validation set. Experiments with other cross-
validation scenarios, allowing for the samples from one infected mouse to be
split over the training and validation set in a fold, resulted in overoptimistic
estimates of the prediction error, due to non-disease-associated correlations
between train- and test-samples belonging to the same organism. Tuning the
regularizing meta-parameters λ1, λ2 and ν for the penalized linear models

41



3. Inference of post-infection time from infected murine gene-expression

data

has been done by parallel estimation of the 3-fold cross validation error on a
finite grid of meta-parameter values4.

3.3.1 Model evaluation based on the post-infection-time prediction
error

Table 3.1 and (Figure 3.2) compare the estimated average post-infection-time
prediction error for the following six predictor models:

• Linear: an elastic net regularized linear regression model (λ1 > 0, λ2 >
0, ν = 0);

• 1NN: first-nearest-neighbor based on Euclidean distance between test
and training samples;

• ATWINP L1: ATWINP-model using lasso-penalized LLR as underlying
time-window-predictor (λ1 > 0, λ2 = ν = 0);

• ATWINP EN: ATWINP-model using elastic net-penalized LLR (λ1 >
0, λ2 > 0, ν = 0);

• ATWINP FL1: ATWINP-model using fused lasso-penalized LLR (λ1 >
0, λ2 = 0, ν > 0);

• ATWINP FEN: ATWINP-model using FENLR (fused elastic net-penalized
LLR) (λ1 > 0, λ2 = 0, ν > 0).

Table 3.1: Summary of estimated expected prediction error for the tested models

Mouse (5757 genes) Mouse-Human (2589 genes)
P l λ1 λ2 ν E SE λ1 λ2 ν E SE

Linear n.a. 0.6 7 n.a. 3.28 0.38 0 6.5 n.a. 3.88 0.39

1NN n.a. n.a. n.a. n.a. 1.64 0.21 n.a. n.a. n.a. 1.97 0.25

ATWINP L1 12 1.4 0 0 1.36 0.18 1 0 0 1.53 0.18

ATWINP EN 12 0.7 1.2 0 1.17 0.15 0.9 1 0 1.42 0.18

ATWINP FL1 12 0.9 0 0.2 1.24 0.18 1.3 0 1.1 1.38 0.16

ATWINP FEN 12 0.4 0.8 0.9 1.18 0.16 1.4 1.4 0.8 1.28 0.16

4Computation has been performed on the ETH high-performance cluster “Brutus”
(http://en.wikipedia.org/wiki/Brutus cluster)

42

http://en.wikipedia.org/wiki/Brutus_cluster


3.3. Comparative model evaluation based on mouse and human data

Figure 3.2: Comparison of the tested predictors with respect to mean prediction error

The increase in prediction error in the Mouse-Human data-set, caused by
loss of information from filtering-out non-mapped genes, remains within the
range of one standard error. The elastic net penalized linear regression model
is dominated by all other predictors, implying a lack of linear dependency
of the post-infection-time from the gene-expression levels. The nearest-
neighbor predictor is dominated by all ATWINP predictors by more than
one standard error, suggesting that the Euclidean distance between complete
samples includes the effect of many gene-levels, which are uninformative
for the malaria post-infection time. The ATWINP EN and FEN predictors
reached the lowest cross-validation prediction errors, while demonstrating
two different classification approaches to solve the inference problem, i.e.
single-task and multi-task classification.

Figure 3.3 gives a box-plot representation of the prediction error associated
with every post-infection day for the 1NN, ATWINP EN and ATWINP FEN
predictors. The prediction error patterns are very similar in the two tested
data-sets, suggesting low prediction errors in the interval of days [6, 13]
and higher prediction errors in the interval of days [14, 5]5, peaking at days
5, 15, 19, 23.

5Intervals are to be interpreted as sequences of consecutive days on the circular axis T.

43



3. Inference of post-infection time from infected murine gene-expression

data

Figure 3.3: Comparison of the tested predictors with respect to prediction-error for each day of
infection

Each box-whisker represents the measured prediction error from the three cross-validation
folds.

3.3.2 Model evaluation based on automatic variable selection

An important property of the models with an elastic net penalty is that they
do both continuous shrinkage and automatic variable selection simultane-
ously [Zou and Hastie, 2005]. By automatic variable selection, we mean
that those models can eliminate non-informative genes by setting their cor-

44



3.3. Comparative model evaluation based on mouse and human data

Figure 3.4: Venn diagram of selected genes by each CV-fold

a,b,c,d: The cardinality of the sets is given in parentheses next to the corresponding circles.
The cardinality of the union of all folds is given in parantheses next to the model name.

45



3. Inference of post-infection time from infected murine gene-expression

data

responding model coefficients to zero, and include whole groups of highly
correlated relevant genes into the model, once one of these genes has been
selected [Zou and Hastie, 2005].

For both data-sets, the linear regression model reached its optimal prediction
error at low values of the lasso regularizing parameter λ1, favoring higher
values for the ridge penalty λ2. This accounts for a non-sparse estimate of the
model coefficients assigning small non-zero weights to all genes. Therefore,
the linear regression failed to perform automatic variable selection.

While the nearest neighbor predictor has a very intuitive interpretation,
because it can provide a similarity-based ranking of the training samples
with respect to a test-sample, it is unable to perform automatic variable
selection and, like other non-selective models, can be sensitive to noise and
misleading non-disease-associated correlations between the training and
test-samples.

Figure 3.4 represents a Venn diagram of the selected sets of genes by the
ATWINP EN and FEN models, in which each circle corresponds to a set
of genes selected in one cross-validation fold. In the case of the Mouse
data-set (a,b), the two models reached minimal cross-validation error at small
values of λ1 resulting in non-sparse coefficient profiles. There is no consensus
in the selected genes sets between different cross-validation folds, as for
both models the three-fold intersection contains less than 50% of the overall
selected genes (number given in parentheses next to the model name). For
the Mouse-Human data-set (c,d,e,f), we observe a non-sparse gene selection
for the ATWINP EN model and a sparse selection for the ATWINP FEN
model. Again, no consensus in the gene-selection could be observed between
the three cross-validation folds. In (e) we see that all 565 genes, that have
been selected in the sparse FEN model have been included as well in the
EN selection. By applying a threshold to the absolute coefficient values,
we produced a list of the top 56 genes selected by the ATWINP EN model
and the top 63 genes, selected by the ATWINP FEN model (Figure 3.4 f). In
these two sets, we retain genes that exceed the threshold value in at least
on cross-validation fold for at least one day. The two sets agree on 24 genes.
Figure 3.5 and Figure 3.6 represent the estimated coefficients of these sets of
genes in the form of a heat-map, produced after hierarchical clustering with
respect to the pairwise correlation between the coefficient vectors.

46



3.3. Comparative model evaluation based on mouse and human data
F

ig
u

re
3

.5
:

H
ea

t-
m

ap
re

pr
es

en
ta

ti
o

n
o

f
se

le
ct

ed
g

en
es

(M
o

u
se

-H
u

m
an

,
A

T
W

IN
P

E
N

(t
h

re
sh

o
ld

=
0

.1
8

5
)

Ea
ch

co
lo

re
d

sq
ua

re
re

pr
es

en
ts

th
e

co
ef

fic
ie

nt
va

lu
e

es
ti

m
at

ed
in

on
e

cr
os

s-
va

lid
at

io
n

fo
ld

fo
r

on
e

ti
m

e-
w

in
do

w
.

47



3. Inference of post-infection time from infected murine gene-expression

data

F
ig

u
re

3
.6

:
H

eat-m
ap

represen
tatio

n
o

f
selected

g
en

es
(M

o
u

se-H
u

m
an

,
A

T
W

IN
P

F
E

N
(th

resh
o

ld
=

0
.2

)

48



3.3. Comparative model evaluation based on mouse and human data

3.3.3 Estimation of post-infection time in humans

To test the transfer-learning approach, we applied the nearest neighbor,
ATWINP EN and FEN predictors to the human samples from the Mouse-
Human data-set. Specifically, we selected random sub-groups of 20 control
human samples, 20 human samples with low parasitemia and 20 human
samples with high parasitemia and we invoked on them the predictor models
from each cross-validation fold, resulting in three predictions per sample
per model. The resulting predictions are given in Figure 3.7. For the control-
samples the only valid prediction would be day 0, corresponding to a non-
infected mouse sample. However, we see that for 17 out of 20 control human
samples, the non-sparse 1NN and ATWINP EN models agree on predictions
in the range [9, 11]. The ATWINP FEN predictions vary considerably between
different cross-validation folds. The model estimated in the first fold predicts
days 3 or 4 for all 20 control-samples, the model from the second fold
predicts days between 10 and 12 and the model from the third fold predicted
days between 9 and 20. The predictions for the low-parasitemia and high-
parasitemia groups were predominantly in the range [9, 11] for all samples.

49



3. Inference of post-infection time from infected murine gene-expression

data

Figure 3.7: Post-infection time prediction in humans

50



Chapter 4

Discussion

In this thesis, we developed a novel method for inferring Malaria post-
infection time as a function of the gene-expression profile in a model organ-
ism. Our tests on a homology-mapped Mouse-Human data-set show that the
model can predict the post-infection time of a new infected mouse-sample
with expected deviation of 1.28 days from the true post-infection time. Based
on this result, we can conclude that the gene-expression profile of an infected
host-organism preserves information with respect to the beginning of the
infection, and can be used to characterize the disease progression on a fine
time-scale. Furthermore, we were able to identify a set of genes that are
informative for the disease progression in mice and we could quantify the
effect of each selected gene at all points in the time-course of the infection.

While these results are very satisfying, we have to admit that the knowledge
transfer from mouse to human patients did not provide a valuable estimation
of the post-infection time in humans. A further analysis of the reasons
leading to this transfer learning failure would go beyond the scope of this
thesis. However, it might be useful to give some ideas for future research.
To begin with, it might be interesting to analyze the reasons why most post-
infection time predictions on human samples are close to days in the range
[9, 11]. Could this be an artifact of the data pre-processing procedure or, are
there biological reasons that would explain the observed proximity between
arbitrary human samples and samples of infected mice in this range? Another
direction would be to revise the homology mapping procedure. While at
the present time the homology mapping has been done in a fully automated
way, it might be beneficial to make selection of relevant genes in the human
context based on prior biological knowledge from previous genome-wide

51



4. Discussion

studies of malaria in humans [Timmann et al., 2012, Bahcall, 2009]. Further,
apart from transfer learning, it would be desirable to extend the ATWINP
FENLR predictor to a non-cyclic case, because this would allow to analyze
cases in which the infected organism does not recover from the disease.

Finally, it would be desirable to explore the modeling of disease progression
in model organisms from the point of view of probabilistic graphical models
[Segal et al., 2003] in order to describe the progression of the transcriptome
states in mice and thereby possibly identify novel gene relationships that
play a key role through the development of the disease.

52



Appendix A

Appendix

A.1 Preprocessing and homology mapping of murine
and human microarray data

A.1.1 Murine Illumina Beadchip microarrays

All described models have been fitted to an Illumina Beadchip microarray
data-set including 78 samples from 3 malaria-infected mice, collected once
per day over a period of 26 days after the infection and 10 control samples
taken from healthy mice.

Each sample in the data-set contains 26579 ILMN probes corresponding
to 18744 unique RefSeqs. Preprocessing of the data was made using the
R-package “lumi” [Du et al., 2008, Barbosa-Morais et al., 2010] and included
the following steps:

1. Background correction based on Illumina Bead-chip control probes;

2. Log-transformation;

3. Detection call filtering with detection-threshold, set to 0.01, keeping
genes that were detected in at least 9 of the 10 control-samples or in at
least one day for all infected mice;

4. Summarizing multiple probes for a single RefSeq gene ID, by taking
the mediane.

5. Only for dataset “Mouse”: For all genes, perform a student t-test of the
hypothesis of equal mean-values between the distribution of control
probes for a given gene and the distribution for infected mice for the

53



A. Appendix

same gene for every individual infection day (1,...,26). Only genes with
p-value ¡0.01 for at least one day have been retained, resulting in 5757
retained genes.

The dataset “Mouse” was created following steps 1 to 5 and was stored in
the file ’bgaffy.quantile.01.medianacc.01.RData’.

A.1.2 Human Illumina Beadchip microarrays

A detailed description of the data can be found in the supplementary in-
formation to Idaghdour et al. [2012]. Gene expression data from human
patients:

• 155 human patients, from which 96 were infected with malaria, while
the remaining 59 samples were from healthy patients.

• Each sample of the data-set contained 47231 ILMN probes correspond-
ing to 39655 unique RefSeq IDs.

The preprocessing of the human data has been done using the R-package
“lumi” [Du et al., 2008, Barbosa-Morais et al., 2010] and included the following
steps:

1. Log-transformation;

2. Detection call filtering with detection-threshold, set to 0.01, keeping
genes that were detected in at least 90% of the control samples or in at
least 4% of the infected samples.

3. Summarizing multiple probes for a single RefSeq gene ID, by taking
the mediane.

A.1.3 Homology mapping from mouse to human genes

• Of 18744 mouse sequences:

– 15587 have a homologous sequence found in human,

– 15328 of which are available on the human BeadChip of which:

• 7683 mouse sequences point to a unique human sequence,

• 6832 mouse sequences point to more than one human sequence,

• 813 mouse sequences point to human sequences pointed by other mouse
sequences

54



A.1. Preprocessing and homology mapping of murine and human microarray data

Here is how the mapping has been produced:

1. Generate unique nuID identifiers for each mouse and human probe
sequence

2. Map the mouse and human nuIDs to the corresponding ProbeID, En-
trez gene ID, gene symbol, and RefSeq using the lumi package for R.
The RefSeq is the key that should be used for homology mapping to
corresponding human RefSeq.

3. Use the BioMart getLDS() function (R package Biomart) to create a
homology-linked dataset of the mouse and human datasets available in
the Ensembl database. Instructions on how to create a linked-dataset
are available in the biomart package vignette available at
http://www.bioconductor.org/packages/2.12/bioc/manuals/biomaRt/man/biomaRt.pdf,
page 8.
The query sent to the ensemble database selects all matching cou-
ples of the following mouse and human sequence attributes: ref-
seq ncrna predicted (for RefSeq’s starting with XR), refseq mrna predicted
(for RefSeq’s starting with XM), refseq mrna (for RefSeq’s starting with
NM), refseq ncrna (for RefSeq’s starting with NR).

4. Based on the matching couples found in the step 3, create a map-
ping table, which is available as an attached Excel file Homology-
Mouse2Human.xlsx and as an exported R-object-file mouse2human.RData.

Based on the above procedure and the preprocessing steps described in
the previous two sections, a combined one-to-one mapped “Mouse-Human”
dataset was generated containing 2589 gene-entries. This data-set was quan-
tile normalized and stored as an exported R-object file
’m.bgaffy.01.medianacc.h.01.medianacc.quantile.RData’.

55

http://www.bioconductor.org/packages/2.12/bioc/manuals/biomaRt/man/biomaRt.pdf




Bibliography

Joshua Attenberg, Kilian Weinberger, and Anirban Dasgupta. Collaborative
Email-Spam Filtering with the Hashing Trick. pages 1–4, 2009.

Orli G. Bahcall. Human disease: Malaria GWA study brings progress for
infectious disease genetics. Nature Reviews Genetics, 10(7):428–429, July
2009. ISSN 1471-0056. doi: 10.1038/nrg2627.

Nuno L Barbosa-Morais, Mark J Dunning, Shamith a Samarajiwa, Jeremy
F J Darot, Matthew E Ritchie, Andy G Lynch, and Simon Tavaré. A re-
annotation pipeline for Illumina BeadArrays: improving the interpretation
of gene expression data. Nucleic acids research, 38(3):e17, January 2010. ISSN
1362-4962.

Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and
statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

Patrı́cia Brasil, Anielle de Pina Costa, Renata Saraiva Pedro, Clarisse da
Silveira Bressan, Sidnei da Silva, Pedro Luiz Tauil, and Cláudio Tadeu
Daniel-Ribeiro. Unexpectedly long incubation period of Plasmodium vivax
malaria, in the absence of chemoprophylaxis, in patients diagnosed outside
the transmission area in Brazil. Malaria journal, 10(1):122, January 2011.
ISSN 1475-2875.

P Bühlmann and M Mächler. Computational statistics, volume 2008. 2011.

Pan Du, Warren a Kibbe, and Simon M Lin. lumi: a pipeline for processing
Illumina microarray. Bioinformatics (Oxford, England), 24(13):1547–8, July
2008. ISSN 1367-4811.

57



Bibliography

Theodoros Evgeniou and Charles A Micchelli. Learning Multiple Tasks with
Kernel Methods. 6:615–637, 2005.

Jelle J Goeman. L1 penalized estimation in the Cox proportional hazards
model. Biometrical journal. Biometrische Zeitschrift, 52(1):70–84, February
2010. ISSN 1521-4036.

Trevor. Hastie, Robert. Tibshirani, and JJH Friedman. The elements of statistical
learning. 2001.

Youssef Idaghdour, Jacklyn Quinlan, Jean-Philippe Goulet, Joanne Berghout,
Elias Gbeha, Vanessa Bruat, Thibault de Malliard, Jean-Christophe Grenier,
Selma Gomez, Philippe Gros, Mohamed Chérif Rahimy, Ambaliou Sanni,
and Philip Awadalla. Evidence for additive and interaction effects of host
genotype and infection in malaria. Proceedings of the National Academy of
Sciences of the United States of America, 109(42):16786–93, October 2012. ISSN
1091-6490.

Meghana Kshirsagar, Jaime Carbonell, and Judith Klein-Seetharaman. Mul-
titask learning for host-pathogen protein interactions. Bioinformatics
(Oxford, England), 29(13):i217–26, July 2013. ISSN 1367-4811. doi:
10.1093/bioinformatics/btt245.

S. Land and J.H. Friedman. Variable fusion: a new method of adaptive signal
regression. 1996.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. The MIT Press, 2012.

S. C. Parija and I. Praharaj. Drug resistance in malaria. Indian J Med Microbiol,
2011.

P Pongsumpun and P Mumtong. MATHEMATICAL MODEL FOR THE
INCUBATION OF THE PLASMODIUM VIVAX MALARIA. INTERNA-
TIONAL JOURNAL OF APPLIED, pages 42–48, 2011.

H Ranson, R N’Guessan, and J Lines. Pyrethroid resistance in African
anopheline mosquitoes: what are the implications for malaria control?
Trends in Parasitology, 2011.

RT Rockafellar. Convex analysis. 1997.

P Schlagenhauf-Lawlor. Travelers’ Malaria. Pmph USA Ltd Series. BC Decker,
2007.

58



Bibliography

Eran Segal, Michael Shapira, Aviv Regev, Dana Pe’er, David Botstein, Daphne
Koller, and Nir Friedman. Module networks: identifying regulatory mod-
ules and their condition-specific regulators from gene expression data. Na-
ture genetics, 34(2):166–76, June 2003. ISSN 1061-4036. doi: 10.1038/ng1165.

RJ Tibshirani. The lasso problem and uniqueness. Electronic Journal of Statistics,
pages 1–25, 2013.

Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith
Knight. Sparsity and smoothness via the fused lasso. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(1):91–108, February
2005. ISSN 1369-7412.

Christian Timmann, Thorsten Thye, Maren Vens, Jennifer Evans, Jürgen
May, Christa Ehmen, Jürgen Sievertsen, Birgit Muntau, Gerd Ruge, Wibke
Loag, Daniel Ansong, Sampson Antwi, Emanuel Asafo-Adjei, Samuel Blay
Nguah, Kingsley Osei Kwakye, Alex Osei Yaw Akoto, Justice Sylverken,
Michael Brendel, Kathrin Schuldt, Christina Loley, Andre Franke, Chris-
tian G Meyer, Tsiri Agbenyega, Andreas Ziegler, and Rolf D Horstmann.
Genome-wide association study indicates two novel resistance loci for
severe malaria. Nature, 489(7416):443–6, September 2012. ISSN 1476-4687.
doi: 10.1038/nature11334.

Hans C van Houwelingen, Tako Bruinsma, Augustinus a M Hart, Laura J
Van’t Veer, and Lodewyk F a Wessels. Cross-validated Cox regression
on microarray gene expression data. Statistics in medicine, 25(18):3201–16,
September 2006. ISSN 0277-6715.

Jeremy West, Dan Ventura, and Sean Warnick. A Theoretical Foundation for
Inductive Transfer, 2007.

WHO. World Malaria Report. 2012.

Christian Widmer. Multitask Learning in Computational Biology. pages
207–216, 2012.

J. Zhou, J. Chen, and J. Ye. MALSAR: Multi-tAsk Learning via StructurAl
Regularization. Arizona State University, 2011.

Jiayu Zhou, Jun Liu, Vaibhav a Narayan, and Jieping Ye. Modeling disease
progression via multi-task learning. NeuroImage, 78:233–48, September
2013. ISSN 1095-9572.

59



Bibliography

Hui Zou and Trevor Hastie. Regularization and variable selection via the elas-
tic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320, April 2005. ISSN 1369-7412.

60


	Contents
	List of Figures
	Introduction
	Multi-Task Learning for Ordered Classification
	Introduction
	Supervised machine learning and classification
	Linear logistic regression for binary classification
	Regularization and variable selection through penalization
	Convex optimization for Classification
	A brief overview of multi-task learning

	The fused elastic net logistic regression (FENLR) method for ordered binary classification
	Experiments with synthetic data-sets

	Inference of post-infection time from infected murine gene-expression data
	Classification formulation
	The k-Nearest Neighbor Predictor
	The aggregated time-window predictor (ATWINP)

	Regression formulation
	Comparative model evaluation based on mouse and human data
	Model evaluation based on the post-infection-time prediction error
	Model evaluation based on automatic variable selection
	Estimation of post-infection time in humans


	Discussion
	Appendix
	Preprocessing and homology mapping of murine and human microarray data
	Murine Illumina Beadchip microarrays
	Human Illumina Beadchip microarrays
	Homology mapping from mouse to human genes


	Bibliography

