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Part I

P R E FA C E





S U M M A RY

Phylogenetic comparative methods (PCMs) are used for studying the evolution of various
biological species, ranging from micro-organisms to animals and plants. These methods are
based on the computer-assisted comparison of phenotype and molecular sequence data in
populations of living and/or extinct species or organisms. With the rise of genome sequenc-
ing, it has become possible to infer the phylogenetic trees of large populations, such as the
entire mammal clade, counting nearly 4000 species, or the transmission trees from large
epidemic outbreaks, counting thousands to hundreds of thousands of infections. This has
encouraged the transfer of PCMs developed originally for studying a few quantitative traits
in a small phylogeny of living species to data much bigger in size and, sometimes, different
in type.

In this thesis, I explore several difficulties encountered in the application of PCMs for the
study of big phylogenetically linked comparative data. These range from technical problems,
such as the development of fast algorithms for phylogenetic model inference to conceptual
issues, such as the difference between an epidemic and a population of sexually reproducing
organisms in estimating the heritability of a quantitative trait. My approach is a mixture
of a top-down and a bottom-up strategy. At the high level, I start from poorly understood
biological questions, for which comparative data has been available, and I identify particular
issues hindering the use of existing PCMs to analyse that data. Then, I develop a prototype
solving these issues for the data in question. Finally, I consider the prototype in a broader
perspective, searching for possibilities to apply the same solution to a more general class
of problems, without compromising the computational efficiency. This approach led to the
development of several software tools, which, I hope, would prove useful in future studies.

The first chapter gives a general historical background and introduces the main concepts
of PCMs. The rest of the thesis is divided in two parts. The part “Publications” (Chapters
2, 3 and 4) includes articles published during my doctoral studies. Chapter 2 introduces
the field of phylogenetics and the software tools used for inferring phylogenetic trees based
on molecular sequence data. Phylogenetic trees of that kind represent the main input for
all methods described in the following chapters. In Chapter 3, I study the effects of within-
host pathogen evolution on various estimators of the set-point viral load heritability in HIV
patients. Based on simulations and real data of nearly ten thousand HIV patients, I show that
neglecting or inaccurately accounting for within-host pathogen evolution has been the main
cause for a long-standing discrepancy between different estimates of the set-point viral load
heritability. Chapter 4 makes use of these results to estimate the heritability of two additional
HIV traits: the CD4 cell decline and the per-parasite pathogenicity. The part “Manuscripts”
(Chapters 5, 6 and 7) includes works which, at the time of submitting this thesis, are in
revision or in preparation for submission to peer-reviewed journals. In Chapter 5, I develop
generic algorithms for parallel traversal of phylogenetic trees, with “traversal” meaning the
application of an abstract operation to all nodes in the tree, while respecting their hierarchical
order. I implement these algorithms within the C++ library SPLITT intended as a fast back-
end for higher level packages, such as generic PCM implementations. Chapter 6 describes
one such tool – the R-package PCMBase implementing fast likelihood calculation of multi-
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trait Gaussian phylogenetic models. The poor efficiency of the likelihood calculation is the
principal bottleneck in applying Gaussian phylogenetic models to big phylogenetic trees.
PCMBase resolves this issue for a very large family of models and all types of phylogenetic
trees, including non-ultrametric trees and polytomies. Taking advantage of PCMBase and
SPLITT, in Chapter 7, I analyze the biggest published phylogeny of mammal species, for
which brain and body mass measurements are available. Based on this data, I show that
present-day PCMs are unable to model the heterogeneity of the evolutionary process across
different mammal clades. As a solution, I propose a new method for inferring jointly a set of
different evolutionary models on different parts of the tree.

Finally, in Chapter 8, I discuss the methods developed in this thesis and suggest directions
for future research.



R É S U M É

Les méthodes phylogénétiques comparatives (MPC) sont appliquées dans l’étude de l’évolution
de plusieurs espèces biologiques, allant de micro-organismes aux espèces animales et végé-
tales. Ces méthodes sont basées sur la comparaison assistée par ordinateur de phénotypes et
de séquences moléculaires dans des populations d’organismes ou d’espèces vivantes aussi
bien que disparues. Avec le développement du séquençage de génomes, il est devenu possi-
ble de déduire les arbres phylogénétiques de grandes populations, comme le clade complet
des mammifères, qui compte près de 4000 espèces ou les arbres de transmission de grandes
épidémies comptant des milliers à des centaines de milliers d’infections. Cela a encouragé le
transfert de MPC développées à l’origine pour étudier quelques caractères quantitatifs dans
une petite phylogénie d’espèces vivantes à des données de taille beaucoup plus grande et
parfois d’un genre différent.

Dans cette thèse, j’explore plusieurs difficultés rencontrées dans l’application de MPC à
des données comparatives de grande taille. Celles-ci vont de problèmes techniques, tels
que le développement d’algorithmes rapides pour l’inférence de modèles phylogénétiques
aux problèmes conceptuels, tels que la différence entre une épidémie et une population
d’organismes se reproduisant sexuellement lors de l’estimation de l’héritabilité d’un car-
actère quantitatif. Mon approche est un mélange de stratégie descendante et de stratégie
ascendante. Au niveau supérieur, je commence par des questions biologiques mal comprises,
pour lesquelles des données comparatives sont disponibles, et j’identifie des problèmes par-
ticuliers qui entravent l’utilisation des MPC existants pour l’analyse de ces données. Ensuite,
je développe une solution prototype spécialisée pour les données en question. Enfin, je con-
sidère le prototype dans une perspective plus large, en étudiant la possibilité d’appliquer
la même solution à une classe de problèmes plus générale, sans compromettre l’efficacité
du calcul. Cette approche a abouti au développement de plusieurs logiciels, qui, je l’espère,
pourraient s’avérer utiles dans de futures études.

Le premier chapitre présente le contexte historique général et les concepts de base des
MPC. Le reste de la thèse est divisé en deux parties. La partie «Publications» (chapitres 2, 3

et 4) comprend des articles publiés au cours du doctorat. Le chapitre 2 présente le domaine
de la phylogénétique et les outils logiciels utilisés pour déduire des arbres phylogénétiques à
partir de séquences moléculaires. Les arbres phylogénétiques de ce type représentent les don-
nées d’entrée principales pour toutes les méthodes décrites dans les chapitres suivants. Dans
le chapitre 3, j’étudie les effets de l’évolution des pathogènes au sein de l’hôte sur plusieurs
estimateurs de l’héritabilité de la concentration virale dans le sang des patients atteints du
VIH. Sur la base de simulations et de données réelles issues de près de dix mille patients
infectés par le VIH, j’ai montré que négliger ou modéliser de manière inexacte l’évolution
intra-hôte des pathogènes était la principale cause d’une divergence de longue date entre
différentes estimations de l’héritabilité de la concentration virale. Le chapitre 4 utilise ces ré-
sultats pour estimer l’héritabilité de deux caractéristiques supplémentaires du VIH: le déclin
des cellules CD4 et la pathogénicité par parasite. La partie «Manuscrits» (chapitres 5, 6 et
7) comprend des travaux qui, au moment de la soumission de cette thèse, sont en révue, en
révision ou en préparation pour être soumis à des journaux scientifiques. Dans le chapitre
5, je développe des algorithmes génériques pour la traversée parallèle d’arbres phylogéné-
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tiques, où «traverser» signifie appliquer une opération abstraite à tous les nœuds de l’arbre,
tout en respectant leur ordre hiérarchique. Je mets en œuvre ces algorithmes au sein de la
bibliothèque C++ SPLITT conçue comme un back-end rapide pour des packages plus com-
plexes, tels que des implémentations de MPC génériques. Le chapitre 6 décrit un de ces outils
- le package PCMBase écrit en R, qui met en œuvre un calcul de probabilité rapide de mod-
èles phylogénétiques Gaussiens à caractères multiples. La faible efficacité du calcul de cette
probabilité est l’obstacle principal à l’application de modèles phylogénétiques Gaussiens aux
grands arbres phylogénétiques. PCMBase résout ce problème pour une très grande famille
de modèles et tous les types d’arbres phylogénétiques, y compris les arbres et les polytomies
non ultramétriques. En tirant parti de PCMBase et de SPLITT, au chapitre 7, j’analyse la plus
grande phylogénie publiée sur les espèces de mammifères, pour laquelle des mesures de
masse cérébrale et corporelle sont disponibles. Sur la base de ces données, je montre que les
MPC actuelles sont incapables de modéliser l’hétérogénéité du processus évolutif à travers
différents clades de mammifères. Pour résoudre ce problème, je propose une nouvelle méth-
ode pour inférer conjointement un ensemble de modèles évolutifs différents sur des parties
différentes de l’arbre.

Enfin, au chapitre 8, je discute les méthodes développées dans cette thèse et propose des
orientations pour les recherches futures.



1
I N T R O D U C T I O N

Species that diverged recently on the tree of life are likely to be phenotypically similar. This
phenomenon known as "phylogenetic effect" undermines the classical statistical methods
applied to comparative inter-species data, because they ignore the species’ shared history
(Felsenstein, 1985). Felsenstein (1985) was the first to propose a straightforward solution –
his famous method of phylogenetic independent contrasts. This event marked the birth of a
new field in evolutionary biology – the phylogenetic comparative methods (PCMs).

Who could have imagined the immense expansion of PCMs through the next decades
(Pennell and Harmon, 2013)? From a nuisance that has to be cleaned from the comparative
data prior to statistical test, the phylogenetic effect is nowadays regarded as a fundamental
source of information about the past evolution of the species (Losos, 2011). To some extent
this progress owes to two interacting lines of development:

• the innovation of fast genetic sequencing techniques providing novel sequence data
from an ever wider range of organisms;

• the development of fast phylogenetic inference tools capable to provide time calibrated
trees from multiple sequence alignments going beyond 10’000 sequences (Price, Dehal,
and Arkin, 2009; Stamatakis, Hoover, and Rougemont, 2008).

Big species trees, counting thousands of species have become available (see, e.g. (Bininda-
Emonds et al., 2007)). Moreover, the sequencing of rapidly evolving micro-organisms, such
as RNA viruses collected from patients during epidemics, provides unprecedented amounts
of sequences, based on which it is possible to infer approximate transmission trees for thou-
sands of patients. Many PCMs invented originally for the analysis of macro-evolutionary
data from living species have been adopted by epidemiologists for the study of pathogen
traits, such as the virulence of human immunodeficiency virus (HIV) and malaria infections
(Alizon et al., 2010; Anderson et al., 2010; Hodcroft et al., 2014; Shirreff et al., 2013).

However, the transfer of PCMs from macro-evolutionary to epidemiological types of data
as well as the transfer from small to big data size hides both conceptual and technical chal-
lenges. In this thesis, I consider in detail two of these challenges:

1. The theoretical basis of PCMs is the quantitative genetics theory of sexually reproduc-
ing species. Since infections represent clonal transmissions of pathogens between hosts,
the mechanisms of sexual reproduction are not present and a straightforward transfer
of the theory is not possible. The differences between pathogens and mating species
need to be identified and fundamental concepts, such as the definition of heritability of
a pathogen trait need a thorough rethinking.

2. Trees inferred from large populations of species or global scale epidemics are char-
acterized by heterogeneous evolutionary processes varying in rates of evolution and
selective pressures. Few of the existing PCMs can infer such heterogeneities and if they
do, these are limited to small ultrametric trees (all species sampled at the current time).
Extending these methods to support large non-ultrametric transmission trees is both a
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modeling and a technical challenge. The existing models must be extended to fit the
varying patterns of phenotypic correlation in different parts of the tree. The big size of
the trees necessitates fast algorithms for fitting such complex models.

In this chapter, I introduce the basics of PCMs. As Harmon (2018) wrote PCMs “... stem
from and bring together three main fields: population and quantitative genetics, paleontol-
ogy, and phylogenetics”. Of the above three fields, only a basic knowledge of quantitative
genetics is indispensable to understand the following chapters in the thesis. I will not dis-
cuss paleontology, because I did not have the chance to analyze paleontological data during
the thesis. The field of phylogenetics is relevant for my work up to the point of using tools
for phylogenetic inference. I discuss this topic briefly at the end of this chapter, while the
co-authored Chapter 2 of the thesis represents a general introduction to the field with focus
on tools for Bayesian phylogenetic inference.

1.1 a brief overview of quantitative genetics

The main objects of study in both population and quantitative genetics are one to several
consecutive generations in a population of organisms. The difference is that, while popu-
lation genetics focus on properties of genes, e.g. the change in allele frequencies from one
generation to the next due to genetic mutation and selection, quantitative genetics estimate
properties, e.g. the heritability, of continuous characters, also known as quantitative traits.
Quantitative traits represent characters that can be measured in real numbers, such as body
mass or systolic pressure. I will use the terms "trait measurement" or "trait value" to denote
the measured value of a trait for a given individual in a population. Conversely, I use the
term "phenotypic value" to denote the true value, excluding possible measurement error.

1.1.1 Quantitative trait loci

A principal goal of quantitative genetics is to partition the phenotypic variance in a popu-
lation into components attributable to genetic and environmental factors. Fundamental for
the study of the genetic and environmental sources of variance is the general linear model
for the phenotype (Lynch and Walsh (1998), ch. 6), in which, for a given trait of interest, the
observed phenotypic value, z, of an organism is represented as a sum of effects of the or-
ganism’s genes, G, general (macro-) environmental effects, E, gene by (macro-) environment
interaction, I and special (micro-) environmental effects, e:

z = G + I + E + e (1.1)

It is assumed that the trait is influenced by a number of genes whose locations in the
species’ genome are called quantitative trait loci (QTLs). In an individual, the configuration
of gene-variants (alleles) found at the trait’s QTLs is called genotype and, for a population,
the genotypic value, Gx, of a genotype x is defined as the expected phenotypic value of
its carriers: Gx = E(z|genotype = x). The remaining terms in eq. 1.1 are “defined in a
least-squares sense as deviations from lower order expectations” (Lynch and Walsh, 1998).
It is worthy to note that Gx depends on the distribution of x across environments in the
population and that, by construction, the residuals z − G = I + E + e have zero mean and
are uncorrelated with G (Lynch and Walsh (1998), ch. 6). Thus, the total phenotypic variance
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observed in the population can be partitioned into a component that is purely genetic and a
component that is attributable to both, non-genetic (purely environmental) factors as well as
gene-by-environment interactions: Var(z) = Var(G) + Var(z− G).

1.1.2 The heritability of quantitative traits

Evolution of a trait under mutation and selection is only possible if the trait is “heritable”.
In simple terms, the term “heritability” summarizes the relationship between genes and phe-
notypes. But can a single word speak for all possible manifestations and consequences of
this relationship? Jacquard (1983) noticed that heritability has been used by quantitative ge-
neticists to serve (at least) three different concepts: (i) the genetic determination of a trait;
(ii) the resemblance between relatives; (iii) the efficiency of selection. Hence, it is often con-
fusing to use the term “heritability” without an accompanying definition or a qualifier like
“narrow-sense”, “broad-sense” and “realized”. This distinction of concepts has become some-
what vague in subsequent works. For instance, the heritability in the narrow-sense, which
is essentially a lower bound for the genetic determination of a trait, has often been consid-
ered equivalent up to a known scaling factor to the parent-offspring regression slope, which
is used to measure the resemblance between family members (Lynch and Walsh, 1998). This
might not present an issue in the study of sexually reproducing populations, where the above
equivalences have been well studied. But when transferring this theory to a different domain,
such as the evolution of pathogens, a confusion arises. I think that the confusion of terms like
narrow- and broad- sense heritability has been a major obstacle causing a long-lasting dis-
crepancy between various studies of the heritability of HIV virulence. Since this discrepancy
is the topic of Chapters 3 and 4 of this thesis, I introduce the above concepts and terminology.
In chapter 3, I’ll overview the same concepts from the point of view pathogen traits.

genetic determination. Considering a quantitative trait, the degree to which the
genes of individuals determine their phenotypic values is quantified in a statistical sense
by the broad-sense heritability, H2. H2 is defined as the ratio of the variance of genotypic
values to total phenotypic variance in the population (Falconer, 1996):

H2 = Var(G)/Var(z) (1.2)

.
Assuming a sufficiently large population and full knowledge of the distinct genotypes in-

fluencing the trait, H2 can be measured by the coefficient of determination, R2
adj, estimated

over a grouping of the population by genotype. In the world of animals and plants, though,
it is practically impossible to measure H2 in this way, because population sizes are small com-
pared to large numbers of (usually unknown) genotypes. Thus, quantitative genetics focuses
on estimating a lower bound for H2 – the narrow-sense heritability, h2. h2 summarizes how
much of the trait variance is attributable to single-locus additive genetic effects. A formal
definition of additive genetic effect is overly technical, so I leave it beyond the scope of this
introduction (it can be found in (Lynch and Walsh, 1998)). Nevertheless, it is important to
note that, in sexually reproducing populations, h2 can be estimated from measures of the
trait-resemblance between relatives.
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resemblance between relatives . Relatives resemble each other not only for carrying
similar genes but also for living in similar environments. Hence, it is necessary to disentangle
the concept of resemblance from that of genetic determination. For an ordered relationship
such as parent-offspring, the resemblance is usually measured by the regression slope, b, of
expected offspring values on mean parental values. For members of unordered relationships,
such as identical twins, sibs and cousins, their relative resemblance is quantified by the one-
way analysis of variance (ANOVA), which estimates the so-called intraclass correlation (ICC)
denoted here as rA[type of relationship].

efficiency of selection. The last of the three concepts identified by Jacquard (1983)
is that of the efficiency of selection for breeding of the individuals with “best” trait-values.
In breeding experiments the goal is to optimize a trait by repetitive artificial selection for
reproduction of the “best” individuals in a generation. A textbook example is truncation se-
lection in which only individuals with measurements above a given threshold are allowed to
reproduce. For a generation, the difference ∆s = µs − µ between the mean value of individ-
uals selected for reproduction, µs, and the mean of the generation, µ, is called the selection
differential. Denoting by the mean of the offspring generation, the difference R = µo − µ, is
called the response to selection. Then, the efficiency of the truncation selection is measured
by the realized heritability (Hartl and Clark, 2007), defined as the ratio:

h2
R = R/∆s (1.3)

connecting the dots . The success of quantitative genetics in the pre-genomic era re-
lies on the insight that “inferences concerning the genetic basis of quantitative traits can be extracted
from phenotypic measures of the resemblance between relatives (Lynch and Walsh, 1998)”. Mathe-
matically, this quote is expressed as a set of approximations, which have become dogmatic
in quantitative genetics:

H2 = R2
adj ' rA[identical twins]

h2 ' b ' 4rA[half sibs] ' h2
R.

The first equation is valid in general, provided there is no strong maternal effect on the trait,
the observed twins have been separated at birth and raised in independent environments
and the assumptions of ANOVA such as normality and homoscedasticity are at least approx-
imately met. The second equation, though, is provable only for diploid sexually reproducing
species. This is because genetic segregation and recombination during sexual reproduction
ensure that single-locus additive effects are inherited at bigger proportions (1/2 from each
parent) compared to multi-locus (epistatic) interactions (i.e. 1/4 for 2-loci-, 1/8 for 3-loci-
interactions, etc) (Falconer, 1996; Lynch and Walsh, 1998).

In summary, quantitative genetics deals with the properties of quantitative traits, observ-
able over one to several generations of a population. In sexually reproducing populations,
heritability is used to quantify to what extent the genetics explain a trait (broad-sense heri-
tability, H2) as well as to measure or predict the response to trait-based selection for repro-
duction (realized heritability, h2

R). Since it is practically hard to measure H2, one often uses
empirical measures of the resemblance between relatives (i.e. parent-offspring regression, b,
or ICC from half sibs, rA) to estimate the extent, to which single-locus additive effects de-
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termine the trait (narrow-sense heritability, h2). It turns out that h2 ' h2
R, justifying the dual

role of h2 as a measure of genetic determination and a measure for the rate of trait-evolution
resulting from selection.

1.2 modeling random genetic drift and selection over long periods of

time

Population and quantitative genetics provide useful models of character evolution in a pop-
ulation on the scale of one to several generations. In contrast, macro-evolutionary studies
focus on the evolution of species that can only be observed over long periods, ranging from
hundreds to millions of generations. Simpson, 1953 used models from population genetics
to interpret the observed evolution of teeth in the fossil record of horses. In analogy with the
idea of adaptive topographies for genotypes proposed by Wright, 1931, Simpson proposed
the concept of adaptive zones for phenotypes. Two decades later, Lande, 1976 provided a
mathematical interpretation of Simpson’s adaptive zones, which is equivalent to the contem-
porary notion of a “fitness landscape”: the (planar) dimensions of the landscape represent
the mean phenotypic values of a set of quantitative traits measured in a population, while
the vertical dimension (i.e. the height of the landscape) is the population’s mean fitness.

Based on a simple equation from quantitative genetics – the definition of realized heritabil-
ity (eq. 1.3) – Lande, 1976 derived a quantitative formula for the expected mean phenotype
in a population evolving under random drift and selection for an arbitrary period of time.
Decades later, this result became the theoretical basis of numerous phylogenetic models of
quantitative trait evolution including the ones discussed in this thesis. Hence, I briefly outline
the assumptions and the resulting expressions following the derivation in Lande, 1976.

It is assumed that a population of effective size N evolves as a sequence of generations.
Each generation undergoes the following order of events: reproduction (birth), selection and
random sampling. As Lande, 1976 summarizes, “N individuals are drawn at random from
the selected population to constitute the parents of the next generation”. A quantitative trait
z is measured as the difference from some optimum value. It is assumed that the selection
for reproduction is stabilizing around this optimum and is described by a Gaussian (normal)
fitness function:

Φ(z) = exp
(

z2

2w2

)
, (1.4)

where w denotes the width of the adaptive zone. At any time t, the distribution of z in
the current population is assumed to be normal with mean z̄(t) and variance σ2

T, which is
constant with respect to both t and z̄(t). Also, it is assumed that the realized heritability, h2

R,
is constant with respect to t and z̄(t) and that the selection is weak, that is σ2

T � w2. Then,
given an initial population mean z̄(0), for any time t > 0 the distribution of the population
mean z̄t is normal with mean and variance (Lande, 1976):

E
[
z̄(t)

]
= z̄(0) exp

(
− h2

Rσ2
T

w2+σ2
T

t
)

Var
[
z̄(t)

]
=

w2+σ2
T

2N

[
1− exp

(
− 2 h2

Rσ2
T

w2+σ2
T

t
)]

.
(1.5)
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Figure 1.1: Random trajectories of OU processes with an optimum θ = 2, initial value z̄(0) = 2 and
different values for the parameters α and σ2.

Substituting θ = 0, α =
h2

Rσ2
T

w2+σ2
T

, σ2 =
h2

Rσ2
T

N in eq. 1.5 and denoting by W(t) the standard
Wiener process, we obtain the solution of an Ornstein-Uhlenbeck stochastic differential equa-
tion (SDE) with initial state z̄(0), long term optimum θ, strength α, and unit-time variance σ2

(Lande, 1976; Uhlenbeck and Ornstein, 1930):

OU: dz̄(t) = α
[
θ − z̄(0)

]
dt + σdW(t)

Solution:

E
[
z̄(t)

]
= z̄(0) exp(−αt)

Var
[
z̄(t)

]
= σ2

2α

[
1− exp(−2αt)

]
.

(1.6)

Hence, the Ornstein-Uhlenbeck (OU) stochastic process defined in eq. 1.6 has been adopted
by evolutionary biologists as a model of evolution under stabilizing selection and random
drift around an optimum point in an adaptive zone of the fitness landscape. Figure 1.1 shows
examples of random OU trajectories for different values of α and σ2.

The parameter α > 0 denotes the selection strength of the OU-process. In the limit α → 0,
the OU process is equivalent to Brownian motion (BM) process with unit time variance incre-
ment σ2. Seen as a model of neutral trait evolution under random genetic drift, the BM pro-
cess has been the first model of evolution incorporated in PCM analysis of quantitative traits
(Felsenstein, 1985). Later, Hansen introduced the OU model to the PCM field by proposing it
as model for modeling evolution under stabilizing selection (Hansen, 1997). Since then, mul-
tiple extensions of these models have been proposed to accommodate various evolutionary
concepts, such as adaptive radiation, punctuated equilibrium, directional selection, truncated
selection and others (reviewd in (Pennell and Harmon, 2013)). In the next section I explain
how the BM and the OU process are integrated in phylogenetic comparative methods.
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1.3 phylogenetic trees

The field of phylogenetics has been relevant for my work up to the point of using tools for
fast inference of big phylogenetic trees from sequence alignments counting up to 10’000 se-
quences. Such phylogenetic trees constitute the main input for PCMs. The referenced articles
(Price, Dehal, and Arkin, 2009; Stamatakis, Hoover, and Rougemont, 2008) provide compre-
hensive overview of maximum likelihood methods for inferring phylogenetic trees. Chapter
2 of this thesis provides an overview of tools for Bayesian inference of phylogenetic trees.

In this thesis I will be using three types of phylogenetic trees:

• transmission trees inferred from HIV genetic sequences extracted from infected patients.
This type of phylogenetic tree represents the main input in Chapters 3 and 4.

• species trees inferred from the reference genetic sequences of living species. Such trees
are called ultrametric to denote that all tips in the tree are located at the same time
distance from the root. This type of tree will be the main input in Chapter 7.

• simulated birth-death trees representing simulated speciation and extinction histories.
Such simulated trees are used for validating some of the implemented methods in
Chapters 5, 6 and 7.

1.4 phylogenetic comparative methods

In this thesis I focus on the subset of PCMs dealing with quantitative traits. In macro-
evolutionary comparative analysis, the traits usually are the average values from measure-
ments in finite populations representative of different biological species. In epidemiological
studies, the measurements are taken from individual patients.

1.4.1 Comparative data

Comparative data constitutes one of the two inputs to a PCM. This is a set of N (possibly
multi-)trait measurements from different species (in macro-evolutionary studies), or patients
(in epidemiological studies). The other input of a PCM represents a rooted time-calibrated
phylogenetic tree with N tips (species or patients), corresponding to the entries in the com-
parative data. In the case of multiple traits, I use the symbol k to denote the number of
traits and ~xi to denote the k-variate trait vector measured for individual i. I use the symbol
X to denote the k × N matrix, the columns of which represent the trait vectors for the N
individuals.

1.4.2 Phylogenetic models of trait evolution

At the heart of every PCM analysing the evolution of quantitative traits, there is a model
of quantitative trait evolution. In the previous section I’ve introduced the BM and the OU
models of trait evolution on the time scale of many generations of a finite population. Trans-
ferring these models to PCMs boils down to using their branching analogs. In essence, it is
assumed that a k-variate parametric stochastic process starts from an initial k-vector at the
root of the phylogenetic tree. At a branching point, the process splits into two processes, each
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one inheriting the last state (trait value) at the branching point. For all developments in this
thesis, it will be assumed that the two processes do not interact between each other after
the split. While not valid in practice, this will be one of the key assumptions enabling fast
model inference on big phylogenetic trees. Scenarios with interaction between the processes
(i.e. co-evolution between forking lineages on the tree) have been considered in other works
(see, e.g. Manceau, Lambert, and Morlon, 2016).

1.4.3 Multivariate Gaussian distributions

The key assumption in all PCMs studied throughout this thesis is that the joint distribution
of all trait measurements associated with the tips in the phylogeny is multivariate Gaussian
(also called multivariate normal). By definition, this is equivalent to the requirement that
every linear combination ~aT~X, where ~a is a column vector of kN real coefficients and ~X is
the kN-vector formed by concatenating all trait vectors in the comparative data, is a normally
distributed random variable. The above implies that every single trait for every single species
or individual is also a normal random variable. This follows simply from applying the rule
to a vector~a, in which one coefficient is set to 1 and all others to 0.

The kN-variate Gaussian distribution is fully characterized by its mean vector, ~µ ∈ RkN ,
and its symmetric positive-definite variance-covariance matrix Σ ∈ [R]kN×kN . Assuming that
the phylogenetic model is one of the above mentioned branching stochastic processes (BM,
OU or some of their variants), ~µ and Σ are functions of the model parameters and the topol-
ogy and branch lengths of the phylogenetic tree. Denoting the parameters of the model by θ

and the phylogenetic tree by T , the probability density function of the multivariate Gaussian
distribution for a concatenated vector of trait values ~X is given by

pd f (~X|θ, T ) = 1√
det(2πΣ(θ, T ))

exp
[
− 1

2
(
~X−~µ(θ, T )

)′Σ(θ, T )−1(~X−~µ(θ, T )
)]

(1.7)

Seen as a function of θ, eq. 1.7 represents the likelihood of the given phylogenetic model
evaluated at the trait data ~X. Phylogenetic models, which exhibit the above multivariate
Gaussian form of the likelihood function, are called Gaussian phylogenetic models.

The efficient calculation of the model likelihood (eq. 1.7) is the main challenge for enabling
the fast inference of Gaussian phylogenetic models given a big phylogenetic tree and trait
data. The reason is that eq. 1.7 involves the construction and inversion of the kN× kN covari-
ance matrix Σ. In Chapters 5 and 6, I’ll show how these computationally heavy operations
can be skipped for a specific sub-family of the Gaussian phylogenetic models.

1.4.4 Inferring phylogenetic model parameters

Inferring the parameters of a phylogenetic model of evolution consists in evaluating the space
of model parameters θ with the goal to find a subset or a point, θ∗ in this space that "fits best"
to a given tree T and data X associated with its tips. This topic will be present in Chapters
3-7 of the thesis. I will study three types of model inference:

• maximum likelihood inference, consisting in maximizing the functionpd f (~X|θ, T ) over
θ. This type of inference will be used in Chapters 3, 4, and 7;
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• Bayesian inference, consisting in finding a sample from the posterior distribution of
θ given a the data, the tree and a prior distribution P(θ). This type of inference will
be applied in Chapters 3 and 4. Since this type of inference is a time intensive task
requiring millions of likelihood evaluations, in Chapter 5, I explore the possibility to
speed-up the Bayesian inference of such a Gaussian phylogenetic model by parallelizing
the likelihood evaluation.

• Maximum likelihood based model selection, which uses multiple maximum likelihood
inferences for a set of “candidate” models in order selecting a best model. This type of
inference will be the main subject in Chapter 7.

1.5 a note on the references

Since chapters 2-4 are included as original publications, the references in these chapters are
at their ends (before Appendices). The references in the remaining chapters are at the end of
the thesis.
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Abstract.—Phylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods
reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying
diversification processes that lead to the observed relationships. These two fields have many practical applications in
disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics. The combination of
increasingly large genetic data sets and increases in computing power is facilitating the development of more sophisticated
phylogenetic and phylodynamic methods. Big data sets allow us to answer complex questions. However, since the required
analyses are highly specific to the particular data set and question, a black-box method is not sufficient anymore. Instead,
biologists are required to be actively involved with modeling decisions during data analysis. The modular design of the
Bayesian phylogenetic software package BEAST 2 enables, and in fact enforces, this involvement. At the same time, the
modular design enables computational biology groups to develop new methods at a rapid rate. A thorough understanding
of the models and algorithms used by inference software is a critical prerequisite for successful hypothesis formulation and
assessment. In particular, there is a need for more readily available resources aimed at helping interested scientists equip
themselves with the skills to confidently use cutting-edge phylogenetic analysis software. These resources will also benefit
researchers who do not have access to similar courses or training at their home institutions. Here, we introduce the “Taming
the Beast” (https://taming-the-beast.github.io/) resource, which was developed as part of a workshop series bearing the
same name, to facilitate the usage of the Bayesian phylogenetic software package BEAST 2. [Bayesian inference; MCMC;
phylodynamics; phylogenetics.]

BEAST 2 IN A NUTSHELL

BEAST 2 (Bouckaert et al. 2014) is an open source
cross-platform software package for analysing genetic
sequences in a Bayesian phylogenetic framework. It
occupies the same niche, and thus incorporates many of
the same models, as other popular Bayesian evolutionary
analyses platforms, including BEAST (Drummond and
Rambaut 2007) (which we refer to here as BEAST 1
in order to distinguish it from BEAST 2), MrBayes
(Huelsenbeck and Ronquist 2001), and RevBayes (Höhna
et al. 2016). Although BEAST 2 is a complete redesign
of the BEAST 1 software package, it retains a similar
user interface and many core model components,
including relaxed molecular clock models (Drummond
et al. 2006), Bayesian skyline models for nonparametric
coalescent analyses (Drummond et al. 2005; Heled and

Drummond 2008), multispecies coalescent inference
with *BEAST (Drummond and Heled 2010), and
phylogeographical models (Lemey et al. 2009; 2010).
Like in BEAST 1, an analysis is set up using input
XML files. For most standard analyses, these files
can be easily created using a graphical user interface
(BEAUti 2).

The key difference in design philosophy between
BEAST 1 and BEAST 2 is a greater emphasis in the latter
on extensibility, resulting in a modular program built
around a set of core components. This allows third-party
developers to implement new methods as packages
that can be added without rebuilding or redeploying
BEAST 2. Through such packages, BEAST 2 provides
a growing collection of new models not available in
BEAST 1, such as flexible birth–death tree-priors (Stadler
et al. 2013; Gavryushkina et al. 2014; Kühnert et al. 2016)
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and structured coalescent models (Vaughan et al. 2014;
De Maio et al. 2015), as well as updates to existing models,
such as StarBEAST 2 (Ogilvie and Drummond 2016). A
list of available models in BEAST 1 and BEAST 2 can
be found at http://beast2.org/beast-features/. (Users
should bear in mind that BEAST 2 is modular by
design, and thus some third-party packages may not be
listed.)

This modular design requires the BEAST 2 user to
make active modeling choices, and it is no longer
possible to simply perform a “default” analysis. This
active involvement opens the door for analyses tailored
specifically to particular data sets and questions, greatly
increasing the power of the package. However, it also
markedly increases the complexity and makes it easier
to inadvertently introduce errors or use inappropriate
models. This added complexity could also be daunting to
novice users and may result in them preferring simpler,
but less powerful, software packages. We will now
briefly highlight the key steps required from the BEAST 2
user when running a data analysis.

At its core, BEAST 2 estimates rooted phylogenies
(T ) from genetic sequencing data (D), with branch
lengths in units of calendar time (i.e., the phylogenies
are time-trees). It concurrently estimates evolutionary
parameters (�), such as the substitution rate, and
parameters describing population dynamics (�), such
as speciation/extinction or transmission/recovery rates.
For inference, BEAST 2 uses a Markov chain Monte
Carlo (MCMC) algorithm to sample from the posterior
distribution,

Pr[T ,�,�|D]= Pr[D|T ,�]Pr[T |�]Pr[�]Pr[�]
Pr[D] . (1)

The output of an analysis is a log-file containing
a sample of the states (T ,�,�) visited by the MCMC
algorithm. After a so-called burn-in phase, each value
(T ,�,�) is visited by the chain at a frequency proportional
to its posterior probability, so the output of BEAST 2
(after eliminating the burn-in) is a set of samples from
the posterior distribution. A recent book (Drummond
and Bouckaert 2015) describes the general theory and
design behind BEAST 2.

For the user to carry out a successful and correct
analysis, several steps need to be performed carefully
to analyze the data and answer the research question
of interest. The researcher must specify a multileveled
(i.e., hierarchical) model with several interacting
components, including: (i) a suitable model describing
the evolution of the sequence data on a time-tree,
including the substitution and molecular-clock models
(Pr[D|T ,�]); (ii) a phylodynamic model describing the
growth of the tree over time (Pr[T ,�]); and (iii) sensible
prior distributions for each of the parameters of the
evolutionary models (Pr[�] and Pr[�]).

In addition to the model components, the researcher
must also specify and fine-tune MCMC operators
that propose new states for the model parameters
(T ,�,�). By choosing appropriate proposal algorithms,

an MCMC analysis is more likely to sample the posterior
distribution efficiently. Finally, once the MCMC chain
has sampled a sufficient number of states, the researcher
must assess whether the chain has converged and
recovered a meaningful signal from the data.

Consequently, the user is challenged with a myriad
of choices on the road to a successful analysis.
Although many potential pitfalls exist, a simple but
solid understanding of the theory behind Bayesian
phylogenetic inference can help guide new users
through an analysis to reach sound conclusions.

“TAMING THE BEAST" FOR THE USER COMMUNITY

In June 2016, we organized a “Taming the BEAST"
workshop in Engelberg, Switzerland, aimed at fostering
interaction between BEAST 2 users and developers.
The workshop was organized by graduate students
and postdoctoral researchers in the Computational
Evolution group at ETH Zürich (https://www.bsse.
ethz.ch/cevo, with generous financial support from
ETH Zürich) and was a mix of lectures by invited
speakers (A.J.D., T.A.H., O.G.P., T.G.V., and T.S. were
invited speakers.) and hands-on tutorials run by the
organisers. (J.B.-S., V.B., L.d.P., D.K., C.M., V.M., N.F.M.,
J.P., D.A.R., and C.Z. organized the tutorial sessions.)
Participants had the opportunity to learn how to
use BEAST 2 with help from the developers and
to discuss questions specific to their research with
other experienced scientists. For the developers, such a
workshop provides direct feedback from users on ease-
of-use, identifying specific issues and discovering the
needs and wishes of the community for future software
and methods development.

The workshop was met with great enthusiasm from
researchers already using or planning to use BEAST 2,
ranging from students to established PIs. (Although
originally envisioned for graduate students only, many
postdoctoral researchers, some lecturers, and a few
professors applied for the workshop as well. Due to the
limited capacity and resources, out of 75 applications,
we selected 36 participants from 14 countries and 28
universities.) The positive feedback from the participants
(see Fig. 1), the overwhelming support from the
community and the demand for further workshops has
provided motivation to initiate a series of “Taming the
BEAST" workshops. At the time of writing, a second
successful edition of “Taming the Beast” was run on
Waiheke island (New Zealand) in February 2017 and
a third edition will take place in July 2017 in London.
Further editions are planned for 2018 in Switzerland,
and for 2019 and 2020 in locations that are yet to be
determined. (We secured funding from ETH Zürich
to support the workshop series in 2017–2020.) Each
workshop is intended as a global event, allowing users
and developers from around the world to meet and share
knowledge.

To ensure these resources are available to the
community, we have set up a website (https://taming-
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FIGURE 1. Boxplot showing the feedback received from 35 respondents (out of 36 workshop participants) on 5 feedback questions. Of the 35
respondents, all but 3 indicated that they would definitely recommend the workshop to a colleague.

FIGURE 2. Structure of the Taming the BEAST web resource as hosted on GitHub. The diagram on the left shows three possibilities for tutorials
available on the website. On the diagram solid lines indicate ownership and dashed lines access. Tutorial 1 is owned by the taming-the-beast
organization on GitHub, and does not have any external contributors. Tutorial 2 was created by contributor a, but ownership has been transferred
to taming-the-beast. Tutorial 3 was created by contributor b, who has retained ownership. In all three cases, it is essential that at least one of the
website administrators has access to the tutorial. The website itself is also hosted on GitHub as a project. When a user visits the website tutorials
appear as on the right of the figure. The left panel contains links to a printable PDF version of the tutorial, the data file (or files) used in the
tutorial, example BEAST 2 XML files, examples output files and a link to the GitHub repository of the tutorial. Recent changes to the tutorial are
also listed.

the-beast.github.io/) with the same name as the
workshop series to serve as a platform for collating a
comprehensive and cohesive set of BEAST 2 tutorials
(see Fig. 2). By providing a set of well-curated tutorials,
“Taming the BEAST" offers researchers the resources
necessary to learn how to perform analyses in BEAST 2.
In addition to tutorials provided by the BEAST 2
developers, this resource page also contains all of the
materials (lecture slides, tutorials, data, and example
outputs) used during the first two “Taming the BEAST"
workshops in Switzerland and New Zealand. These
materials will be updated and extended for future
editions of the workshop. Tutorials are released under

a license that gives anyone the right to freely use
(and modify) tutorials for courses or workshops, as
long as appropriate credit is given and the updated
material is licensed in the same fashion. (By default
we use a Creative Commons Attribution 4.0 license,
however the exact license to be used is determined by the
tutorial’s authors.) We hope that these open resources
will encourage other research groups/universities to
host and organize their own “Taming the BEAST"
workshops. As a community resource, the “Taming the
BEAST" website will maintain a list of workshops, and
tutorial developers are available to provide support to
organizers.
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CONTRIBUTING TO TAMING THE BEAST

In keeping with the BEAST 2 design philosophy, we
designed the website to have a modular, extensible
architecture. Each tutorial is stored in its own
GitHub (http://www.github.com) repository, where it
is bundled with all of the supporting data and scripts
needed to run the tutorial, as well as example output
files. This makes it possible for anyone with a GitHub
account to raise issues and suggest edits or extensions
to tutorials. Similarly, it is also possible for external
contributors to submit new tutorials to the website.
We provide a template tutorial and comprehensive
documentation to help potential contributors get
started.

By providing a “Taming the Beast” platform that
allows issues to be raised and content to be edited, we
hope that the community will play an active role in
curating tutorials. We further envision these resources
will continue to grow as the community contributes
more tutorials. For instance, the developers of a new
BEAST 2 package will be able to add a tutorial for their
package to the “Taming the BEAST" site, where it will be
accessible in a central location, along with other BEAST 2
tutorials, making it easier for users to become familiar
with their package.

Because tutorials are stored in GitHub repositories
that track change history, all contributors can receive
proper credit for their work. Furthermore, authors of
new tutorials can retain ownership of their tutorials after
publication. In addition, GitHub tracks traffic to tutorials
over time and makes it easy for users to interact with
authors, giving authors a measure of their work’s impact
within the community. Finally, because of the distributed
nature of the website, it is robust to changes in any single
repository, making it easy to update or add individual
tutorials.

SUMMARY

The tutorials on the “Taming the Beast” website allow
users to learn about the entire BEAST 2 analysis pipeline,
with most tutorials focusing on a particular model
component or a single BEAST 2 package. The website
provides immediate access to the materials that guide
users in the application of a range of models to their own
data. In addition, there are tutorials on postprocessing,
interpreting results, as well as troubleshooting. We will
ensure the maintenance of the website and incorporation
of new tutorials through two to three responsible
people from the Computational Evolution group at ETH
Zürich as well as collaborating groups acting as website
administrators. The administrators of the website can be
reached via tamingthebeast@bsse.ethz.ch.

We hope that the “Taming the BEAST” platform will
allow new BEAST 2 users to accelerate their learning
process and to successfully “tame” the BEAST. At the
same time, we hope that it will serve as a central
repository of teaching materials that will allow BEAST 2
developers and users to exchange knowledge about how

to effectively teach the use of BEAST 2. Finally, this
platform will hopefully further encourage developers to
share their own materials with the wider community.
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Pathogen Traits. Molecular Biology and Evolution 6:9.

Since the work of Alizon et al. (2010), proposing a PCM-based approach to estimating the
heritability of virulence of HIV infections, several laboratories have developed similar tech-
niques and applied them to different cohorts of HIV patients. With an order of magnitude
difference between the lowest and the highest estimates, there was a controversy in the field.
Some authors supported the hypothesis of zero or negligible heritability, meaning that the
virus strain infecting a patient does not have an effect on the time it would take for the pa-
tient to develop AIDS, in the absence of therapy. Other authors believed that the virus was
playing a dominant role or, at least, the virulence resulted from the interplay between the
virus and the immune system specific for every infection. A strong statistical support for the
first hypothesis was shown in Hodcroft et al. (2014), who estimated HIV set point viral load
(spVL) heritability in the UK subtype B cohort (N=8468) to less than 6%. In this article, I
applied different heritability estimators on the same dataset and to a number of epidemic
simulations following a mechanistic model of within- and between-host viral dynamics dur-
ing an epidemic. Based on these results, I state that the estimate of 6% is a negatively biased
estimator of the spVL-heritability, due to the fact that the assumed Brownian motion model
for the viral evolution did not fit to the pattern exhibited by the comparative data.

Following is the original publication, which appeared in Molecular Biology and Evolution
in the early 2018.
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Abstract

Pathogen traits, such as the virulence of an infection, can vary significantly between patients. A major challenge is to
measure the extent to which genetic differences between infecting strains explain the observed variation of the trait. This
is quantified by the trait’s broad-sense heritability, H2. A recent discrepancy between estimates of the heritability of HIV-
virulence has opened a debate on the estimators’ accuracy. Here, we show that the discrepancy originates from model
limitations and important lifecycle differences between sexually reproducing organisms and transmittable pathogens. In
particular, current quantitative genetics methods, such as donor–recipient regression of surveyed serodiscordant couples
and the phylogenetic mixed model (PMM), are prone to underestimate H2, because they neglect or do not fit to the loss
of resemblance between transmission partners caused by within-host evolution. In a phylogenetic analysis of 8,483 HIV
patients from the United Kingdom, we show that the phenotypic correlation between transmission partners decays with
the amount of within-host evolution of the virus. We reproduce this pattern in toy-model simulations and show that a
phylogenetic Ornstein–Uhlenbeck model (POUMM) outperforms the PMM in capturing this correlation pattern and in
quantifying H2. In particular, we show that POUMM outperforms PMM even in simulations without selection—as it
captures the mentioned correlation pattern—which has not been appreciated until now. By cross-validating the POUMM
estimates with ANOVA on closest phylogenetic pairs, we obtain H2 � 0.2, meaning �20% of the variation in HIV-
virulence is explained by the virus genome both for European and African data.

Key words: HIV, set-point viral load (spVL), donor–recipient regression, ANOVA, phylogenetic mixed model,
Ornstein–Uhlenbeck.

Introduction

Pathogens transmitted between donor and recipient hosts
are genetically related much like children are related to their
parents through inherited genes. This analogy between trans-
mission and biological reproduction has inspired the use of
heritability (H2)—a term borrowed from quantitative genet-
ics (Falconer and Mackay 1996; Lynch and Walsh 1998; Hartl
and Clark 2007) to measure the contribution of pathogen
genetic factors to pathogen traits, such as virulence, transmis-
sibility, and drug-resistance of infections.

Two families of methods have been used to estimate the
heritability of a pathogen trait in the absence of knowledge
about its genetic basis:

• Resemblance estimators measuring the relative trait-
similarity within groups of transmission-related patients.
Common methods of that kind are linear regression of
donor–recipient (DR) couples (Fraser et al. 2014;
Leventhal and Bonhoeffer 2016) and analysis of variance
(ANOVA) of patients linked by (near-)identity of carried
strains (Anderson et al. 2010; Shirreff et al. 2013).

• Phylogenetic comparative methods measuring the so
called phylogenetic heritability, that is, the association

between observed trait values from patients and their
(approximate) transmission tree inferred from pathogen
sequences. Common examples of such methods are the
Felsenstein’s independent contrasts (Felsenstein 1985),
the phylogenetic mixed model (PMM) (Housworth
et al. 2004), and the Pagel’s k (Freckleton et al. 2002).

Most of these methods have been applied in studies of the
viral contribution to virulence in an HIV infection (Tang et al.
2004; Alizon et al. 2010; Hecht et al. 2010; Hollingsworth et al.
2010; van der Kuyl et al. 2010; Lingappa et al. 2013; Shirreff
et al. 2013; Yue et al. 2013; Fraser et al. 2014; Hodcroft et al.
2014; Bonhoeffer et al. 2015; Leventhal and Bonhoeffer 2016;
Bachmann et al. 2017; Bertels et al. 2018; Blanquart et al.
2017). To quantify the virulence of an HIV infection, the
above studies have used measurements of the log10 set point
viral load, lg(spVL)—the amount of virions per blood-volume
stabilizing in HIV patients at the beginning of the asymptom-
atic phase and best-predicting its duration (Mellors et al.
1996). In the view of discrepant reports of lg(spVL)-heritabil-
ity, many authors have questioned the accuracy of the exist-
ing methods and have proposed various adaptations of these
methods in order to overcome potential pitfalls, such as false
model assumptions (e.g., neutral evolution and ultrametricity
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of transmission trees) and imperfections in the data (e.g.,
small data size, presence of cofactors, and measurement er-
ror) (Shirreff et al. 2013; Fraser et al. 2014; Hodcroft et al. 2014;
Leventhal and Bonhoeffer 2016; Mitov and Stadler 2016;
Bachmann et al. 2017; Bertels et al. 2018; Blanquart et al.
2017). Despite these efforts, to date, there is no consensus
about the root cause of the discrepancy in lg(spVL)-her-
itability estimates and there is little reuse of the tools
previously implemented, making it hard to compare the
estimates from different studies.

In the remainder of the introduction, we consider the
definition of broad-sense heritability from the point of
view of the key differences between sexually reproducing
organisms and clonally transmitted pathogens. Then, in
New Approaches, we introduce a model of an epidemic
that allows exploring how one of these differences—the
within-host evolution of pathogens—affects most of the
currently used estimators of heritability. In Results, we
compare these estimators based on simulations of the
above model and report an analysis of spVL data from a
large HIV cohort. In the light of these results, we designate
the most reliable estimators of pathogen trait heritability
and establish a lower bound for the viral genetic contri-
bution to set-point viral load.

Differences between Pathogens and Sexual Species
When Estimating Heritability
According to quantitative genetics theory, the broad-sense
heritability, H2, of a quantitative trait is defined in the context
of a population of organisms as the ratio of the genotypic
over phenotypic variance:

H2 ¼ VarðGÞ=VarðzÞ; (1)

where z denotes the phenotypic value and G denotes the
genotypic value assigned to each individual in the popu-
lation (Falconer and Mackay 1996; Lynch and Walsh 1998;
Hartl and Clark 2007). In the case of epidemics, the pop-
ulation represents a sample of hosts, that is, organisms
infected by a given type of pathogen. The phenotypic
value, z, represents a numerical trait resulting from the
infection, and the genotypic value, G, is defined for each
pathogen genotype (strain), as the phenotypic value to be
expected if it would be measured in a randomly chosen
host infected with this strain.

In a large enough population with fully known pathogen
genotypes, H2 could be measured by the direct heritability
estimator—the coefficient of determination, R2

adj, obtained
over a grouping of the population by genotype. In practice
though, this is impossible, because population sizes are small
compared with large numbers of (usually unknown) geno-
types. To tackle this problem, pathogenecists have relied on
the apparent analogy between parent–offspring couples in
sexually reproducing populations and DR couples in infected
populations. This analogy has motivated the use of correla-
tion measures, such as the DR regression slope, b, and the
intraclass correlation in phylogenetic pairs, rA, to estimate the
heritability of pathogen traits (Anderson et al. 2010; Shirreff

et al. 2013; Fraser et al. 2014; Leventhal and Bonhoeffer 2016).
However, three differences between the lifecycles of clonally
transmitted pathogens and sexually reproducing organisms
challenge this approach:

Asexual Haploid Nature of Pathogen Transmission
The first difference is that, unlike the reproduction of diploid
organisms, the transmission of a pathogen from a donor to a
recipient is more similar to asexual (haploid) reproduction,
because, typically, whole pathogens get transferred between
hosts.

Partial Quasispecies Transmission
The second difference is that the transmitted proportion of
genetic information characterizing the pathogen in the donor
is unknown and varying between transmission events. For
example, for slowly evolving bacteria such as
Mycobacterium tubercolosis (Mtb), transmission can be clonal
(Bjorn-Mortensen et al. 2016), whereas, for rapidly evolving
retroviruses like HIV, transmission is often accompanied by
bottlenecks causing only a tiny sample of the large and ge-
netically diverse virus population in the donor (a.k.a., quasis-
pecies) to penetrate and survive in the recipient (Keele et al.
2008).

Within-Host Pathogen Evolution
The third difference involves the change in phenotypic value
due to within-host pathogen mutation and recombination.
Although genetic change is rare during the lifetime of animals
and plants and its phenotypic effects are typically delayed to
the offspring generations, it constitutes a hallmark in the
lifecycle of pathogens and causes a gradual or immediate
phenotypic change such as increasing virulence, immune es-
cape, or drug resistance (fig. 1).

The net outcome of these differences is that unlike family
members, for which the amount of genetic overlap is a known
constant, for example, 50% for a parent–child couple, the
genetic overlap between the two quasispecies in a DR couple
is an unknown variable. If there were full quasispecies trans-
mission and no within-host evolution, the pathogen popula-
tions found in a donor and a recipient at any moment after a
transmission event would be similar to identical twins raised
in separate environments. By analogy with twins, any measure
of the trait correlation in transmission couples, such as b and
rA, would estimate the broad-sense heritability, H2 (Lynch and
Walsh 1998). However, the partial quasispecies transmission
and the within-host evolution taking place in the time be-
tween transmission and measurement can lead to a change in
the correlation between couple members without affecting
H2 at the population level. We presume that this issue has
been at the origin of the discrepancy in previous reports of
lg(spVL)-heritability. In particular, the applied methods vary
substantially in how they account for the within-host evolu-
tion taking place between transmission and measurement:
some of them neglect it (Shirreff et al. 2013; Leventhal and
Bonhoeffer 2016); others diminish its effect through prefer-
ential sampling of patients in the early phase of infection
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or transmission couples shortly after seroconversion
(Hecht et al. 2010; Hollingsworth et al. 2010); third ones at-
tempt to account for it by taking advantage of stochastic
models of trait evolution, such as Brownian motion (BM)
(Alizon et al. 2010; Hodcroft et al. 2014) or Ornstein–
Uhlenbeck (OU) (Mitov and Stadler 2016; Bertels et al.
2018; Blanquart et al. 2017). In the next section, we introduce
a simulation based method allowing for within-host evolu-
tion, which enables comparing these methods against the
direct heritability estimator, R2

adj.

New Approaches

A Toy-Model of an Epidemic
We propose a simulation based method for evaluating differ-
ent heritability estimators. Our approach differs substantially
from previous simulation studies, where the pathogen geno-
type is equivalent to the genotypic value, G, and is modeled
by a continuous branching stochastic process evolving along
a given transmission tree (Alizon et al. 2010; Shirreff et al.
2013; Hodcroft et al. 2014; Leventhal and Bonhoeffer 2016).
In contrast, we implement a more explicit model in which the
pathogen genotype represents a randomly mutating se-
quence of gene variants (alleles) and the trait value results
from the interaction between the pathogen genotype and the
host. The main advantages of this approach are 1) the pos-
sibility to compare different estimates of H2 to its true value
obtained from the direct estimator, R2

adj, and 2) the possibility
to study the effect of within-host mutation and measurement
delay on all estimates. As a limitation, the proposed model
omits coexistence of strains within a host and partial quasis-
pecies transmission, because of their complexity and the cur-
rent lack of empirical knowledge and data (see Discussion).
For this reason and because of its minimalistic design, we refer
to this model as a “toy-model.”

In the toy-model, we think of an infection as an asexually
reproducing haploid organism. The environment for this or-
ganism is the infected host, and the reproduction represents
the clonal transmission of the infecting strain to other sus-
ceptible hosts. The pathogen has a genome composed of a
finite number of loci, which mutate sporadically during infec-
tion, resulting in mutant strains. Depending on the within-
host fitness of a mutant, it can be eliminated or it can imme-
diately substitute the strain currently invading the host. A
trait, z, is determined by the additive effects and epistatic
interactions between the alleles at the loci in the genome
as well as the interaction between these alleles and the
host immune system. The immune system represents a com-
bination of an immutable host type interacting in a prede-
fined way with each possible strain and a randomly drawn
host-specific effect, summarizing the unknown effects of
other host-related factors, such as age, sex, and habitat. We
assume two equally frequent host-types and two trait-
determining loci in the pathogen genotype with M1¼3 and
M2¼2 possible alleles at each locus. Thus, there are six pos-
sible strains and a total of 12 host type�strain combinations
(fig. 2A).

The dynamics of the model combine within-host events,
such as strain mutation and substitution, and between-host
events, such as transmission, natural, and pathogen-induced
death as well as diagnosis followed by immediate uninfec-
tiousness, recovery, and immunity for the patient. These
events are modeled as Poisson processes for every infected
individual (fig. 2B). The between-host dynamics are inspired
from a classical Susceptible-Infected-Recovered (SIR) model
with finite population size (ch. 1 in Keeling and Rohani 2007).
The main difference with this epidemiological model is that
the rate of transmission and the expected infectious period
for an infected host can depend on the current trait value and

FIG. 1. A schematic representation of an epidemic. Colored rectan-
gles represent infectious periods of hosts, different colors corre-
sponding to different host types. Triangles inside hosts represent
pathogen quasispecies, change of color indicating substitution of
dominant strains. Capital letters denote host-events: M: diagnosis
followed by immediate phenotype measurement, treatment and
quarantine for the host; D: host death. The transmission tree
connecting the measured hosts is drawn in black. Notice that,
due to incomplete sampling, there is no one-to-one correspond-
ance between transmission events and branching points on the
tree. By convention, the time origin is at the root of the tree and
the time is assumed to increase toward the the tips. We denote by
ti the time distance from the root to tip i. The mean root-tip
distance is denoted by�t. For each couple of tips, i and j, we denote
by tij the time distance from the root to their most recent common
ancestor (mrca) and by dij their phylogenetic distance. For clarity,
we show how dij can be expressed in terms of tij and the root-tip
times, ti and tj. Couples of tips that are each other’s closest tip by
phylogenetic distance, for example, (2, 3) and (4, 5), are called
“phylogenetic pairs” (PPs). In balanced trees, PPs tend to coincide
with pairs of tips descending from the same parent node (a.k.a.,
siblings or “cherries”).
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are subject to change with a substitution of the dominant
strain within the host (magenta curves on fig. 2D–F). For each
class of events (within- and between-host), we define two
modes:

• neutral: events occur at rates defined as global constants
mimicking neutrality (i.e., lack of selection) with respect
to z (black lines on fig. 2C–E). For within-host events, it is
assumed that a mutation of the pathogen is followed by
instantaneous substitution of the mutant for the current
dominant strain, regardless of the induced change in z
(black line on fig. 2C);

• select: within hosts, it is assumed that a mutation of the
pathogen is followed by instantaneous substitution only
if it results in a higher z (magenta line on fig. 2C).
Borrowing the approach from (Fraser et al. 2007), the
rates of transmission and within-host mutation are de-
fined as increasing Hill functions of 10z, whereas the in-
fectious time period is defined as a decreasing Hill
function of 10z, thus mimicking increasing per capita

transmission- and pathogen-induced mortality for higher
z (magenta lines on fig. 2D–F).

By combining different modes of dynamics at the within-
and between-host levels the model can reproduce some pop-
ular hypotheses of pathogen evolution. For example, the
combination of select within-host mode with select
between-host mode simulates selection for optimal transmis-
sion potential (Fraser et al. 2007; Stearns and Koella 2007).
This allows to evaluate the combined effect of selection and
within-host trait evolution on various estimators of
heritability.

Results
In this section, we use empirical data and simulations of the
toy-model to show that most of the heritability estimators
borrowed from classical quantitative genetics are prone to
significant bias, because they neglect or inaccurately model
the change in resemblance between transmission partners

FIG. 2. A toy model of an epidemic with within-host mutation and SIR dynamics. (A) A pathogen trait represents the sum of a general <host
type�strain> effect and a normally distributed host-specific effect. Pathogen strains are denoted by the alleles at the two loci, for example, “31”
stays for allele 3 at locus 1 and allele 1 at locus 2. The density of the trait in a population of hosts represents a mixture of normal densities
corresponding to the host type�strain combinations scaled by their relative frequencies. (B) Within a host (left), each locus of the infecting strain
mutates at a rate �; horizontal or curved arrows denote mutations at the first locus, vertical arrows denote mutations at the second locus; the rates
above the arrows correspond to the per locus mutation rate (�) divided by the number of possible other alleles at the locus. At the between-host
level (right), the alive population is divided into a Susceptible, Infected, and Recovered compartments, letters S, I and R denoting the corresponding
proportions in the population at a given time. New individuals become susceptible at a constant rate k; risky contacts occur at rate SIj, where j
denotes the individual contact rate; a risky contact can result in a new infection with probability c, �c denoting the mean of the transmission
probabilities of all infected hosts at a given time; a host is removed from the infected compartment in the events of death (occuring at rate d) or
diagnosis (occurring at rate q); diagnosis is followed by immediate treatment, recovery, and lifelong immunity for the patient; healthy hosts leave
the S and R compartments at a constant rate l. (C) An example time-course of the trait value within a host—the value changes instantaneously
with strain mutation; in the “neutral” case (black), the trait can change upward or downward; in the “select” case (magenta), only positive changes
are possible (mutants resulting in a lower trait value can not substitute the current strain). (D–F) The per locus mutation rate (�), the per risky
contact transmission probability (c) and the expected infectious time (1=ðdþ qÞ) are defined as constants in the “neutral” case (black) or as
functions of the trait value in the “select” case (magenta) (supplementary table S2, Supplementary Material online).
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caused by within-host evolution of the pathogen. Based on
the toy-model simulations, we designate the intraclass corre-
lation in the closest phylogenetic pairs (CPPs) and the phy-
logenetic heritability, H2

OUð�tÞ, measured by the phylogenetic
Ornstein–Uhlenbeck mixed model (POUMM) (Mitov and
Stadler 2016; Blanquart et al. 2017) as the most reliable esti-
mators of pathogen trait heritability. Based on applying these
estimators to a large HIV cohort, we establish a lower bound
for the lg(spVL)-heritability.

Through the rest of the article, we use the symbol dij to
denote the phylogenetic distance between two tips, i and j, on
a transmission tree (fig. 1). dij summarizes the total evolution-
ary distance between two infected hosts at the moment of
measuring the trait value and is measured in substitutions per
site for real trees and arbitrary time units for simulated trees.
We begin our report with a result from HIV data demonstrat-
ing the relevance of within-host evolution for estimating
heritability.

The lg(spVL) Correlation in HIV Phylogenetic Pairs
Decreases with dij

We used one-way analysis of variance (ANOVA, rA) and
Spearman correlation (rSp) to estimate the correlation in
phylogenetic pairs (PP) extracted from a recently pub-
lished transmission tree of 8,483 HIV patients (Hodcroft
et al. 2014). As defined in Shirreff et al. (2013), phylogenetic
pairs represent pairs of tips in the transmission tree that
are mutually nearest to each other by phylogenetic dis-
tance (dij) (fig. 1). We ordered the PPs by dij and split
them into ten strata of equal size (deciles), evaluating
the correlation between pair trait values (rA and rSp) in
each stratum. The point estimates and the 95% confidence
intervals (CI) are shown with black and magenta points
and error bars on figure 3. Dashed horizontal bars denote
the 95% CI for rA evaluated on all phylogenetic pairs.
Despite some irregularities, there is a well pronounced pat-
tern of decay in the correlation—strata to the left (small
dij) tend to have higher rA values than strata to the right
(big dij). The values of rA closely matched the values from
other correlation estimators, such as DR (b) and the
Pearson product mean correlation (r) (results not shown).
We performed ordinary least squares regressions (OLS) of
the values rA;Dk

and rSp;Dk
on the mean phylogenetic dis-

tance, �dij;k , in each stratum, k ¼ 1; . . .; 10. The slopes of
both regressions were significantly negative (P<0.05) and
are shown as black and magenta lines on figure 3. Similar
slopes were obtained when using other stratifications of
the data (supplementary fig. S1, Supplementary Material
online).

The above result shows that the value of a heritability
estimator based on the correlation within phylogenetic pairs
(including DR couples) depends strongly on dij. Another issue
of all estimators of H2 using the correlation in phylogenetic or
DR pairs is that the underlying statistical methods require
independence between the pairs—the trait values in one
pair should not influence or be correlated with the trait values
in any other pair. This assumption is not valid in general, due
to the phylogenetic relationship between all patients. One

way to mitigate the effects of phylogenetic relationship
between pairs is to limit the analysis to the closest pairs
(i.e., pairs, for which dij does not exceed some user specified
threshold). This approach has the drawback of omitting
much of the data from the analysis. As an alternative taking
advantage of the entire tree, it is possible to correct for the
phylogenetic relationship by using a phylogenetic compara-
tive method (PCM). PCMs attempt to solve both of the above
problems, because they 1) incorporate the branch lengths in
the transmission tree to model the variance–covariance
structure of the data and 2) correct for the phylogenetic
correlation when estimating evolutionary parameters or the
phylogenetic heritability of the trait (Felsenstein 1985;
Housworth et al. 2004; Alizon et al. 2010). These advantages
of the PCMs come at the price of assuming a specific sto-
chastic process as a model of the trait evolution along the
tree. In the next subsection, we show that assuming an inap-
propriate process for the trait evolution can cause a signifi-
cant bias in the estimate of phylogenetic heritability.

A Brownian Motion Process Cannot Reproduce the
Decay of Correlation in the UK Data
We implemented a maximum likelihood and a Bayesian fit of
the PMM (Lynch 1991; Housworth et al. 2004) and its exten-
sion to an Ornstein–Uhlenbeck model of evolution
(POUMM) (Hansen 1997; Mitov and Stadler 2016;
Blanquart et al. 2017). The PMM and the POUMM assume
an additive model of the trait values, zðtÞ ¼ gðtÞ þ e, in
which z(t) represents the trait value at time t for a given
lineage of the tree, g(t) represents a heritable (genotypic)
value at time t for this lineage and e represents a nonheritable
contribution summarizing the effects of the host and his/her
environment on the trait and the measurement error. The
only difference between the two models is their assumption
about the evolution of g(t) along the branches of the tree—
the PMM assumes a Brownian motion process; the POUMM
assumes an Ornstein–Uhlenbeck process (Uhlenbeck and
Ornstein 1930; Lande 1976; Hansen 1997).

Using the maximum likelihood estimates of the model
parameters (supplementary table S1, Supplementary
Material online), we simulated random trait trajectories on
the UK tree, running 100 replications for each model. For each
replication, we estimated the correlation, rA, in PPs using the
simulated values instead of the real values. The resulting cor-
relation estimates are shown on figure 3 as brown and green
points and error bars for the PMM and POUMM simulations,
respectively. We notice that there is a significant difference
between the correlation estimates of the two models. In par-
ticular, in the leftmost decile the POUMM estimate is signif-
icantly higher than the PMM estimate (the POUMM 95% CI
excludes the PMM estimate).

In order to understand the above difference between
PMM and POUMM, we derive approximate analytical expres-
sions of the correlation as a function of dij under the two
models. Assume for simplicity that two tips i and j are situated
at equal distance, t, from the root. According to Brownian
motion (BM), the correlation is a function of t and the
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distance tij from the root to the pair’s most recent common
ancestor (mrca):

rBM;ij ¼
CovBMðtij; r2Þ

VarBMðt; r2Þ þ r2
e

¼ r2 tij

r2 tþ r2
e

;

(2)

where r2 denotes the unit time variance of the BM process
and r2

e denotes the variance of the environmental (nonher-
itable) component, e (Housworth et al. 2004, Materials and
Methods). According to Ornstein–Uhlenbeck (OU), the cor-
relation is a function of t, tij, as well as the phylogenetic dis-
tance between the tips, dij:

rOU;ðijÞ ¼
CovOUðtij; dij; a; r2Þ

VarOUðt; a; r2Þ þ r2
e

¼
r2

2a
expð�adijÞ 1� expð�2atijÞ

� �
r2

2a
1� expð�2atÞð Þ þ r2

e

;

(3)

where the additional parameter a denotes the selection
strength of the OU process (Hansen 1997). By plugging-in
the ML estimates for the model parameters (supplementary
table S1, Supplementary Material online), substituting t with
the mean root-tip distance in the tree (�t ¼ 0:14), and ap-
proximating tij with its linear regression on dij in the UK tree
(t̂ij ¼ 0:15� 0:63dij), we obtain:

rBM;ij � 0:08� 0:36dij: (4)

rOU;ðijÞ � 0:21 expð�28:78dij Þ

�
 

1� exp �8:35þ 36:47dij

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�0

!

� 0:21 expð�28:78dijÞ:

(5)

The last approximation in equation (5) follows from the
fact that the term exp ð�8:35þ 36:47dijÞ is nearly 0 for the
range of phylogenetic distances (dij 2 ½0; 0:14�) in the UK
tree (see supplementary information, Supplementary
Material online, for further details on the above
approximations).

Equations (4) and (5) represent a linear and an exponential
model of the correlation as a function of dij. The values of
these equations at dij¼0 are equal to the phylogenetic herit-
abilities estimated at the mean root-tip distance �t under
PMM and POUMM (details on that later). The slope of the
linear model (eq. 4) equals�0.36 (95% HPD [�0.58,�0.21]).
The rate of the exponential decay (eq. 5) equals the POUMM
parameter a¼28.78 (95% HPD [16.64, 46.93]) and the half-life
of decay equals lnð2Þ=a ¼ 0:02 substitutions per site (95%
HPD [0.01, 0.04]).

Plotting the values of equations (4) and (5) and their 95%
HPD intervals on figure 3 reveals visually that the POUMM fits
better to the data than the PMM. Statistically, this is con-
firmed by a lower Akaike Information Criterion (AICc) for the
POUMM fit and a strictly positive HPD interval for the OU
parameter a (supplementary table S1 and fig. S8,
Supplementary Material online). The slope of the linear
model derived from the PMM fit (eq. 4, brown line on
fig. 3) is nearly flat compared with the slopes of the two
OLS fits (black and magenta lines on fig. 3). To explain this,

FIG. 3. Correlation between lg(spVL)-values in HIV phylogenetic pairs. A sample of 1917 PPs with lg(spVL)-measurements from HIV patients shows
a decrease in the correlation (ICC) between pair trait values as a function of the pair phylogenetic distance dij. The point estimates and 95% CIs in
ten strata of equal size (deciles) are depicted as points and error bars positioned at the mean dij for each stratum, �dij . Black and magenta points with
error-bars denote the estimated rA and rSp in the real data. Dashed horizontal bars denote the 95% CI for rA evaluated on all phylogenetic pairs. A
black and a magenta inclined line denote the least squares linear regression of rA and rSp on �dij . Brown and green points with error bars denote the
estimated values of rA obtained after replacing the real trait values on the tree by values simulated under the maximum likelihood fit of the PMM
and the POUMM methods, respectively (mean and 95% CI estimated from 100 replications). A brown and a green line show the expected
correlation between pairs of tips at distance dij, as modeled under the ML-fit of the PMM and the POUMM (eqs. 2 and 3). A light-brown and a light-
green region depict the 95% high posterior density (HPD) intervals inferred from Bayesian fit of the two models (Materials and Methods).
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we notice that in PMM, the covariance in phylogenetic pairs
and the variance at the population level are modeled as linear
functions of the root-mrca distance (tij) and the root-tip dis-
tance (t) (numerator and denominator in eq. 2). Importantly,
both of these linear functions are bound to the same slope
parameter, r2. As it turns out, in the UK data, the covariance
and the variance increase at different rates with respect to tij

and t (see supplementary fig. S2 and supplementary informa-
tion, Supplementary Material online). We conclude that the
PMM is not an appropriate model for the correlation in phy-
logenetic pairs, being unable to model the above difference in
the rates.

In the limit dij ! 0, a phylogenetic pair should be equiv-
alent to a DR couple at the moment of transmission, that is,
before the genotypes in the two hosts have diverged due to
within-host evolution. Thus, it appears reasonable to use an
estimate of the correlation at dij¼0 as a proxy for the broad-
sense heritability, H2, in the entire population. This idea has
been applied in previous studies of HIV (Hecht et al. 2010;
Hollingsworth et al. 2010; Bachmann et al. 2017; Blanquart
et al. 2017) as well as malaria (Anderson et al. 2010). One
potential obstacle to this approach is the possibility of intro-
ducing a sampling bias by filtering of the data. For example, if
the study is on a trait, which evolves toward higher values
during the course of infection, patients with lower trait values
would tend to be more frequent among the CPPs than in the
entire population. Thus, there is no guarantee that the trait
distribution and, therefore, the heritability measured in the
CPPs equals the heritability in the entire population. This
problem of sampling bias affects both, resemblance-based
as well as the currently used phylogenetic comparative meth-
ods. This suggests that the approach of imposing a threshold
on dij or estimating the correlation (rA, rSp or another corre-
lation measure) at dij¼0 needs further validation. In the next
subsection, we use simulations of the toy model to show that
sampling bias, although present, is comparatively small with
respect to the negative bias due to measurement delay.

ANOVA-CPP and POUMM Are the Least Biased
Heritability Estimators in Toy-Model Simulations
Here, we use simulations of the toy-model to compare a
number of heritability estimators against the known true
value of H2 (measured directly by the coefficient of determi-
nation R2

adj). We use the symbol T10k to denote the transmis-
sion tree of the first 10,000 diagnosed individuals in a
simulation. Below we list the different heritability estimators
grouping them by the type of their input:

• Grouping of the trait values by identical pathogen geno-
type. We evaluated the coefficient of determination ad-
justed for finite sample size, R2

adj, and the intraclass
correlation (ICC) estimated using one-way ANOVA,
rA½id�. The main difference between these two estimators
is the ANOVA assumption that the group-means (geno-
typic values) are sampled from a distribution of poten-
tially many more genotypes than the ones found in the
data. In contrast, R2

adj assumes that all genotypes in the
population are present in the sample. Since the latter

assumption is true for the simulated epidemics, R2
adj rep-

resents the reference (true) value of H2 to which all other
estimates are compared.

• Known DR couples. We evaluated the regression slope of
recipient on donor values in three ways: 1) b—based on
the trait values at the moment of diagnosing the infec-
tion; 2) b0—based on the trait values right after the trans-
mission events; and 3) bdij

0—based on the subsample of
diagnosed couples having dij not exceeding a threshold
dij
0. Based on a trade-off between precision and bias, we

specified dij
0 ¼ D1, D1 denoting the first decile in the

empirical distribution of dij (see supplementary informa-
tion, Supplementary Material online).

• Phylogenetic pairs (PPs) in T10k. We evaluated ICC using
ANOVA in three ways: 1) rA—based on all PPs; 2) rA;D1

—
based on CPPs defined as PPs in T10k having dij not ex-
ceeding the first decile, D1; and 3) rA;0;lin—the estimated
intercept from a linear regression of the values rA;Dk

on
the mean values dij;k in each decile, k ¼ 1; . . .; 10; For the
latter two estimators, which attempt to estimate rA at
dij¼0, we use the acronym ANOVA-CPP. As an alterna-
tive to ANOVA, which is more robust to outliers (e.g.,
extreme values at the tails of the trait distribution), we
evaluated the Spearman correlation in the first decile,
hereby denoted as rSp;D1

.
• Transmission tree T10k. We evaluated the phylogenetic

heritability based on the ML fit of the PMM and
POUMM models. Specifically, we compared the classical
formula evaluated at the mean root-tip distance �t in the
tree (eqs. 10 and 12) (Housworth et al. 2004; Leventhal
and Bonhoeffer 2016) and the empirical formula based
on the sample trait variance, s2(z) (eqs. 11 and 13) (de-
scribed in Materials and Methods). For the PMM, we
denote these estimators by H2

BMð�tÞ and H2
BMe; for the

POUMM, we use the symbols H2
OUð�tÞ and H2

OUe:

Table 1 summarizes the mathematical definition and the
assumptions of the above estimators. A more detailed de-
scription of the PMM and the POUMM methods is provided
in Materials and Methods. The referenced textbooks on
quantitative genetics (Lynch and Walsh 1998) are excellent
references for the other methods.

By combining “neutral” and “select” dynamics for the
strain mutation and substitution rates at the within-
host level, and the virus-induced per capita death rate
and per contact transmission probability at the
between-host level, we defined the following scenarios
of the toy-model:

• Within: neutral/Between: neutral;
• Within: select/Between: neutral;
• Within: neutral/Between: select;
• Within: select/Between: select;

For each of these scenarios and mean contact interval 1=
j 2 f2; 4; 6; 8; 10; 12g (arbitrary time units), we executed
ten simulations resulting in a total of 4� 6� 10¼ 240 sim-
ulations. Of the 240 simulations, 175 resulted in epidemic
outbreaks of at least 10,000 diagnosed hosts. For each

Mitov and Stadler . doi:10.1093/molbev/msx328 MBE

762



outbreak, we analyzed the populations of the first up to
10,000 diagnosed hosts.

Rarer transmission events (bigger 1=j) result in longer
transmission trees and, therefore, longer average phylogenetic
distance between tips, dij (supplementary fig. S3,
Supplementary Material online). This enabled demonstrating
the effect of accumulating within-host evolution on the dif-
ferent heritability estimators (fig. 4).

Figure 4 shows that the estimators bD1
, b, rA;D1

, and rA are
negatively biased in general for all toy-model scenarios. This
bias tends to increase with the mean contact interval, 1=j
(respectively, dij), because random within-host mutation
tends to decrease the genetic overlap between DRs and phy-
logenetic pairs (supplementary fig. S4, Supplementary
Material online). The negative bias was far less pronounced
when imposing a threshold on dij but this came at the cost of
precision (less biased but longer box-whisker plots for bD1

and
rA;D1

compared with b and rA) (fig. 4). Several additional

sources of bias were revealed when considering the practically
unavailable estimators b0 and rA½id�. The estimator rA½id� was
positively biased due to the small number of simulated gen-
otypes (only six)—this was validated through additional sim-
ulations showing that rA½id� converges to the true value for a
slightly bigger number of genotypes (e.g., K�24 genotypes,
see supplementary information, Supplementary Material on-
line). The estimator b0 was behaving accurately in the neutral/
neutral scenario (excluding very short contact intervals) but
tended to have a bias in both directions in all scenarios in-
volving selection. The main reason for these biases was the
phenomenon of “sampling bias” consisting in a difference
between the distributions of measured values in the DR cou-
ples and the population of interest. Although its magnitude
was comparatevely small in the simulations, we presume that
sampling bias could play an important role in real biological
applications. We already gave an example of this bias in the
previous subsection. Another manifestation of sampling bias

Table 1. Tested Estimators of the Broad-Sense Heritability of Pathogen Traits.

Input Data Method (Abbreviation) Assumptions Estimator

Grouping by identical infecting
strain

Adjusted coefficient of
determination

The sample of data contains all
genotypes present in the
population

R2
adj ¼ 1� N�1

N�K
s2ðz�ĜÞ

s2ðzÞ (6)

One-way analysis of variance
(ANOVA)

Independently sampled genotypes rA½id� ¼ ðMSb�MSeÞ=n
ðMSb�MSeÞ=nþMSe

(7)
i.i.n.d. trait-values within each

group
Equal within-group variances

(homoscedasticity)
Known donor–recipient couples Donor–recipient regression

(DR)
Independently sampled donor–

recipient couples
Equal residual variance across the

range of donor-values
(homoscedasticity)

b ¼ sðzdon ;zrcpÞ
s2ðzdonÞ ;(8)

Equal donor and population
variances

variants: b, b0, bdij
0

Phylogenetic pairs (PPs) ANOVA on all/closest PPs
(ANOVA-PP, ANOVA-
CPP)

ANOVA assumptions (see above) Defined as in equation (7), but
calculated on PPs

variants: rA, rA;dij
0

Spearman correlation on
all/closest PPs

PPs are independent from one
another

Pearson (product mean) correla-
tion, calculated on the ranks of
the trait-values.

variants: rSp, rSp;dij
0

Linear regression of rA on dij

upon a stratification
rAdepends linearly on dij The intercept, rA;0;lin, from the OLS

fit of the model
Equal residual variance across the

range of dij

rAðdijÞ ¼ rA;0;lin þ x1dij: (9)

Transmission tree Phylogenetic mixed model
(PMM)

Branching BM evolution H2
BMð�tÞ ¼ �tr2=ð�tr2 þ r2

e Þ (10)

i.i.n.d. distributed environmental
deviation, e � Nð0; r2

e Þ
H2

BMe ¼ 1� r2
e=s2ðzÞ(11)

Phylogenetic Ornstein–
Uhlenbeck mixed model
(POUMM)

Branching OU evolution H2
OUð�tÞ ¼

r2 1� expð�2a�tÞð Þ
r2 1� expð�2a�tÞð Þþ2ar2

e
(12)

i.i.n.d. environmental deviation,
e � Nð0; r2

e Þ
H2

OUe ¼ 1� r2
e=s2ðzÞ(13)

NOTE.—Notation: s2ð�Þ, sample variance; sð�; �Þ, sample covariance; N, number of patients; K, number of distinct groups of patients, that is, genotypes or phylogenetic pairs;

z, measured values; Ĝ, estimated genotypic values: mean values from patients carrying a given genotype; zdon, donor values; zrcp, recipient values; MSe , within-group mean square:

MSe ¼
P
ðzi��ziÞ2

N�K , where zi is an individual’s value and�zi is the mean value of the group to which the individual belongs; MSb , among-group mean square: MSb ¼
P
ð�zi��zÞ2

K�1 , where

�zi is defined as above and �z is the population mean value; n, weighted mean number patients in a group, that is, n¼2 for phylogenetic pairs and n ¼ N�
P

n2
i

N

� �
=ðK � 1Þ for

groups of variable size; a, r, re: PMM/POUMM parameters (described in Materials and Methods).
i.i.n.d., independent and identically normally distributed; dij, phylogenetic distance between donor–recipient pairs or phylogenetic pairs; dij

0 , threshold on dij (see text).
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is the fact that b0 does not fully eliminate the effect of
within host-evolution (and selection) in the donors. This
is why, in cases of selection, the phenotypic variance in
the donors tends to be smaller than the variance in the
recipients as well as the variance in the population (sup-
plementary fig. S5, Supplementary Material online).
Additional details on these potential sources of bias are
provided in supplementary information, Supplementary
Material online.

Further, the simulations showed that a worsening fit of the
BM model on longer transmission trees was causing an in-
flated estimate of the environmental deviation, re, in the

PMM fits and, therefore, a negative bias in H2
BMð�tÞ and

H2
BMe (compare estimates for small and big values of 1=j

on fig. 4 and supplementary fig. S6C, Supplementary
Material online). In contrast with the PMM, the POUMM
estimates, H2

OUð�tÞ and H2
OUe were far more accurate and

the value of re in the POUMM ML fit was nearly matching
the true nonheritable deviation in most simulations (fig. 4 and
supplementary fig. S6C, Supplementary Material online). The
better ML fit of the POUMM was confirmed by stronger
statistical support, namely by lower AICc values in all toy-
model simulations (supplementary fig. S6D, Supplementary
Material online).

FIG. 4. Heritability estimates in toy-model simulations. (A–D) H2-estimates in simulations of “neutral” and “select” within-/between-host dy-
namics. Each group of box-whiskers summarizes the simulations for a fixed scenario and contact interval, 1=j; white boxes (background) denote
true heritability, colored boxes denote estimates (foreground). Statistical significance is evaluated through t-tests summarized in table 2.
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The fact that the POUMM outperformed the PMM in all
scenarios contradicted with the initial belief that the PMM
should be the better suited model for a neutrally evolving trait
represented by the neutral/neutral scenario, whereas the
POUMM should fit better to scenarios involving selection.
It was also counterintuitive that the inferred parameter a
from the POUMM model was significantly positive in all
simulations including the neutral/neutral scenario (supple-
mentary fig. S6B, Supplementary Material online). To better
understand this phenomenon, we performed the PP stratifi-
cation analysis on the toy-model data (supplementary fig. S7,
Supplementary Material online). This revealed a pattern of
correlation that decays exponentially with dij. The shape of
exponential decay was mostly pronounced for longer contact
intervals, 1=j, particularly in the neutral/neutral scenario
(first column on supplementary fig. S7, Supplementary
Material online). In supplementary information,
Supplementary Material online, we show that an exponen-
tially decaying phenotypic correlation is consistent with a
neutrally mutating genotype under a Jukes–Cantor substitu-
tion model (Yang 2006). The decay of the correlation was still
present in scenarios involving within- and/or between-host
selection but the observed pattern was rather irregular and
deviating from an exponential function of dij (supplementary
fig. S7, Supplementary Material online). In most cases, the ML
fit of the PMM method was a bad fit to the decay of corre-
lation (brown dots and error-bars on supplementary fig. S7,
Supplementary Material online); for longer contact intervals,
there was a tendency toward constant values of the correla-
tion under PMM far below the true value (brown dots and
error bars on supplementary fig. S7, Supplementary Material
online). This explains the overall better accuracy of the
POUMM versus the PMM method.

Table 2 shows the average bias of each tested estimator for
each of the four scenarios. We conclude that, apart from the
practically inaccessible estimators based on grouping by iden-
tical genotype (R2

adj and rA½id�), the most accurate estimators
of H2 in the toy-model simulations are H2

OUð�tÞ and H2
OUe

followed by estimators of the correlation in PPs minimizing
the phylogenetic distance dij, that is (rA;D1

, rA;0;lin, rSp;D1
). In

the next subsection, we report the results from these estima-
tors in the UK HIV data.

Heratibality of lg(spVL) in the UK HIV Cohort
We evaluated the correlation in the CPPs (ANOVA and
Spearman correlation) in data from the UK HIV cohort com-
prising lg(spVL) measurements and a tree of viral (pol) sequen-
ces from 8,483 patients inferred previously in (Hodcroft et al.
2014). In addition, we performed a Bayesian fit of the POUMM
and the PMM methods to the same data. The goal was to test
our conclusions on a real data set and to compare the H2-
estimates from CPPs and POUMM to previous PMM/ReML-
estimates on exactly the same data (Hodcroft et al. 2014).

In applying ANOVA-CPP, the first step has been to define
the threshold phylogenetic distance for defining CPPs. To that
end, we explored different stratifications of the PPs as shown
on supplementary figure S1B, Supplementary Material online,
and a scatter plot of the phylogenetic distances against the

absolute phenotypic differences, jD lgðspVLÞj (fig. 5A). This
revealed a small set of 116 PPs having dij 	 10�4 and nar-
rowly coinciding with the first vigintile (also called 20-quantile
or ventile) of dij. The phylogenetic distance in all remaining
tip-pairs was more than an order of magnitude bigger, that is,
dij > 10�3. Given that the phylogenetic distance on the
transmission tree is measured in substitutions per site and
the length of the pol-region is in the order of 103 sites, we
presume that the above set of 116 PPs corresponds to a set of
116 pairs of identical pol consensus sequences (no sequence
data were available to check this). Based on this observation,
we defined the above pairs as CPPs and the threshold was
formally set to dij

0 ¼ 10�4. We validated that the CPPs were
randomly distributed along the tree (fig. 5B). The random
distribution of the CPPs along the transmission tree suggests
that these phylogenetic pairs correspond to randomly occur-
ring early detections of infection (trait values from each pair
depicted as magenta segments on fig. 5B). To check that the
filtering of the data, did not introduce a considerable sam-
pling bias due to selection (see previous subsection), we also
validated that there was no substantial difference in the trait
distributions of all patients, the PPs and the CPPs (fig. 5C).

We compared the following estimators of H2:

• ANOVA-CPPs (rA;D1
, rA;10�4 , rA;V1

) and the original PP-
method rA;

• The intercept from the linear regression of rA on dij upon
a stratification of the PPs into deciles (rA;0;lin, eq. 9);

• Spearman correlatoin in CPPs (rSp;D1
, rSp;10�4 , rSp;V1

) and
in all PPs (rSp).

• The intercept from the linear regression of rSp on dij upon
a stratification of the PPs into deciles (rSp;0;lin);

• POUMM (H2
OUð�tÞ, H2

OUe), versus PMM (H2
BMð�tÞ, H2

BMe) on
the entire tree;

The results from these analyses are reported in table 3.
ANOVA- and Spearman-correlation estimates, which

Table 2. Mean Difference bH2 � R2
adj from the Toy-Model Simulations

Grouped by Scenario.

Within: Neutral Neutral Select Select
Between: Neutral Select Neutral Select

N 50 41 47 37
b0 �0.01* �0.02** 0.05** 0.04**
bD1

�0.07** �0.04** 0 �0.01
b �0.25** �0.2** �0.07** �0.06**
rA½id� 0.05** 0.05** 0.08** 0.06**

^rA;0;lin �0.05** �0.06** 0.01 �0.04**
rA;D1

�0.05** �0.06** 0 �0.03*
rA �0.18** �0.15** �0.06** �0.08**

rSp;D1
�0.05** �0.05** �0.05** �0.07**

H2
BMð�tÞ �0.17** �0.17** �0.01 �0.04*

H2
BMe �0.28** �0.24** �0.12** �0.16**

H2
OUð�tÞ �0.01 �0.02** 0.01* 0.03**

H2
OUe �0.01 �0.02** 0.01* 0.03**

NOTE.—Statistical significance is estimated by Student’s t-tests, P values denoted by
an asterisk as follows: * P<0.01; **P<0.001. Gray background indicates estimates
that are unavailable in practice.
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minimized the phylogenetic distance by means of regression
or filtering of the phylogenetic pairs had point-estimates of
rA;10�4 ¼ 0:17 and rSp;10�4 ¼ 0:22. The slightly higher esti-
mate for the Spearman correlation could be explained by
the presence of outliers in the data. Applying the POUMM
to the entire tree reported a point estimate H2

OUð�tÞ ¼ 0:21
(8,483 patients, 95% CI [0.14, 0.29]).

Conversely, the heritability estimates from the original PP
method (ANOVA or Spearman correlatoin on all PPs) and
the PMM were significantly lower and falling below the 95%
CIs from the POUMM (table 3). This confirms the observa-
tion from the toy-model simulations that these estimators are
negatively biased, since they ignore or inaccurately model the
changing correlation within pairs of tips. We validated the
stronger statistical support for the POUMM with respect to
the PMM, by its lower AICc value (supplementary table S1,
Supplementary Material online) and by the posterior density
for the POUMM parameter a (supplementary fig. S8,
Supplementary Material online).

Finally, we compared our estimates of lg(spVL)-heritability
to previous applications of the same methods on different
data sets (fig. 6). In agreement with the toy-model simula-
tions, estimates of H2 using PMM or other BM-based phylo-
genetic methods (i.e., Blomberg’s K and Pagel’s k) are notably
lower than all other estimates, suggesting that these phylo-
genetic comparative methods underestimate H2;
resemblance-based estimates are down-biased by

measurement delays (e.g., compare early vs. late in the
Netherlands on fig. 6).

In summary, POUMM and ANOVA-CPP yield agreeing
estimates for H2 in the UK data and these estimates agree
with resemblance-based estimates in data sets with short
measurement delay (different African countries and the
Netherlands). Similar to the toy-model simulations, we notice
a well-pronounced pattern of negative bias for the other
estimators, PMM and ANOVA-PP, as well as for the previous
resemblance-based studies on data with long measurement
delay.

Discussion

Clarifying the Terminology and Notation
In this study, we explored how the differences between
pathogens and mating species affect the various tools
employed in estimating the heritability of pathogen traits.
For mating species, the resemblance between relatives has
been directly associated with the genetic determination of
quantitative traits. The most prominent example is the
parent–offspring regression slope used to estimate the
narrow-sense heritability, h2. For pathogens, one needs to
disentangle the concepts of resemblance and genetic deter-
mination. First of all, the only reason to associate the parent–
offspring regression slope with narrow-sense heritability is the
presence of genetic segregation and recombination during
sexual reproduction, favoring the inheritance of single-locus
additive effects over multilocus epistatic effects (Lynch and
Walsh 1998). Given that clonal pathogen transmission
excludes segregation and recombination, the above associa-
tion is invalid for pathogen traits. The correlation between
transmission partners should rather be associated with the
broad-sense heritability, H2. This association, though, is
compromized by a number of sources of bias, such as partial
quasispecies transmission, within-host evolution, and many
potential cofactors, such as shared habitats between donors
and recipients, sampling bias, and convergent within-host
evolution. All methods reviewed in this article can be
regarded as methods that estimate the correlation between
patients infected with identical pathogen strains. This is true
also for the phylogenetic approaches, since, technically, the
phylogenetic heritability is the expected correlation between
pairs of tips in the limit dij ! 0 (see also Materials and
Methods). Thus, all estimators can only be regarded as sta-
tistics summarizing the resemblance that is still observable in
the presence of the above factors.

A Disagreement between Simulation Studies
Using simulations of the toy epidemiological model, we have
shown that two methods based on phenotypic and sequence
data from patients—estimating the correlation in CPPs and
fitting the POUMM to the data—provide more accurate her-
itability estimates compared with previous approaches like
DR and PMM. However, we should not neglect the arising
discrepancy between our and previous simulation reports
advocating either PMM (Hodcroft et al. 2014) or DR
(Leventhal and Bonhoeffer 2016) as unbiased heritability

FIG. 5. Phylogenetic pairs in lg(spVL) data from the United Kingdom.
(A) A scatter plot of the phylogenetic distances between pairs of tips
against their absolute phenotypic differences: gray, PPs (dij > 10�4);
magenta, CPPs (dij < 10�4). A black line shows the linear regression
of jD lgðspVLÞj on dij (the slope of the regression was statistically
positive at the 0.01 level). (B) A box-plot representing the trait-dis-
tribution along the transmission tree. Each box-whisker represents
the lg(spVL)-distribution of patients grouped by their distance from
the root of the tree measured in substitutions per site. Wider boxes
indicate groups bigger in size. Segments in magenta denote lg(spVL)-
values in CPPs. (C) A box-plot of the lg(spVL)-distribution in all
patients (black), PPs (gray), and CPPs (magenta).
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estimators. Both of these studies have modeled within-host
evolution, but failed to demonstrate the biases shown in this
article. This could be explained by simulation artifacts.
Hodcroft et al. (2014) perform simulations under a PMM
model, so it is unlikely to reveal any bias in the PMM estima-
tor; Leventhal and Bonhoeffer (2016) evaluated DR in con-
secutive Wright–Fisher generations using the donor values at
the moment of transmission, thus, excluding potential mea-
surement delay in the donors and accounting for a minute
measurement delay in the recipients (one generation on the
scale of hundreds of simulated generations). Compared with
these simulations, the toy-model presented here has several
important advantages: 1) it is biologically motivated by phe-
nomena such as pathogen sequence mutation during infec-
tion, transmission of entire pathogens instead of proportions
of trait values, and within-/between-host selection; 2) it allows
to compare various resemblance-based and phylogenetic her-
itability estimates against the direct estimator, R2

adj; 3) it is a
fair test for all estimators of heritability, because it does not
obey any of the estimators’ assumptions, such as linearity of
recipient—on donor values, normality of trait values, OU or
BM evolution, independence between pathogen and host
effects; and 4) it generates transmission trees that reflect
the between-host dynamics, for example, clades with higher
trait values exhibit denser branching in cases of between-host
selection. As a criticism, we note that the toy-model does not
allow strain coexistence within a host and, thus, is not able to
model partial quasispecies transmission and, in particular,
transmission bottlenecks (Keele et al. 2008) or preferential
transmission of founder strains (Lythgoe and Fraser 2012).
Although it may be exciting from a biological point of view,
the inclusion of strain coexistence comes with a series of
conceptual challenges, such as the definition of genotype
and clonal identity or the formulation of the trait value as a
function of a quasispecies—instead of a single strain gen-
otype. These challenges should be addressed in future studies

implementing more advanced models of within-host dynam-
ics and leveraging deep sequencing data. To conclude, the
discrepancy between simulation studies highlights that no
inference method suits all simulation setups ergo biological
contexts. Thus, rather than proving universality of a particular
method, simulations should be used primarily to study how
particular biologically relevant features affect the methods on
the table.

The Heritability of HIV Set-Point Viral Load Is at Least
20%
Applied to data from the United Kingdom, POUMM
reported three times higher point estimates and nonoverlap-
ping HPDs compared with a previous PMM/ReML-based es-
timate on the same data (0.06, 95% CI [0.02, 0.09]) (Hodcroft
et al. 2014). Our PMM implementation confirmed this esti-
mate. However, based on figure 3 and our simulations (fig. 4),
the PMM estimates are underestimates of the true heritabil-
ity. The estimate of 20% should still be considered a lower
bound since it does not account for additional sources of
potential negative bias, such as partial quasispecies transmis-
sion and measurement error. This result matches estimates
from GWAS studies on the pathogen revealing that genetic
polymorphisms in the virus explain�20% from spVL variance
in other cohorts (reviewed in Bonhoeffer et al. 2015). Overall,
our analyses yield an unprecedented agreement between
estimates of DR resemblance and phylogenetic heritability
in large European data sets and African cohorts, provided
that measurements with large delays have been filtered out
prior to resemblance evaluation (Hecht et al. 2010;
Hollingsworth et al. 2010) (fig. 6A). Also noteworthy are the
facts that our estimates for the UK data set support the
results from Fraser et al. (2014) who conducted a meta-
analysis of three data sets on known transmission partners
(Hollingsworth et al. 2010; Lingappa et al. 2013; Yue et al.
2013) (433 pairs in total) reporting heritability values of

Table 3. Estimates of lg(spVL)-Heritability in HIV Data from the United Kingdom.

Method N Ĥ
2

95% CI 95% HPD

Linear regression of rA on �dij in deciles (eq. 9) (rA;0;lin) 10 points 0.17 [0.09, 0.24] –

Linear regression of rSp on �dij in deciles (rSp;0;lin) 10 points 0.18 [0.11, 0.25] –
ANOVA-CPP (rA;V1

) 224 0.17 [�0.02, 0.31] –
ANOVA-CPP (rA;10�4 ) 232 0.16 [0.01, 0.30] –
ANOVA-CPP (rA;D1

) 384 0.16 [0.06, 0.25] –

ANOVA-PP (rA)a 3,834 0.11 [0.08, 0.14] –
Spearman-CPP (rSp;V1

) 224 0.23 [0.05, 0.42] –
Spearman-CPP (rSp;10�4 ) 232 0.22 [0.03, 0.4] –
Spearman-CPP (rSp;D1

) 384 0.2 [0.06, 0.34] –

Spearman-PP (rSp)a 3,834 0.11 [0.06, 0.15] –

POUMM (H2
OUð�tÞ) 8,483 0.21 – [0.14, 0.29]

POUMM (H2
OUe) 8,483 0.2 – [0.13, 0.29]

PMM (H2
BMð�tÞ)

b 8,483 0.08 – [0.05, 0.12]

PMM (H2
BMe)b 8,483 0.06 – [0.02, 0.1]

PMM, ReML (Hodcroft et al. 2014)b 8,483 0.06 [0.03, 0.09] –

NOTE.—Also written are the results from a previous analysis on the same data set (Hodcroft et al. 2014). “–”: the analysis was not done in the mentioned study. Gray background:
estimates considered unreliable due to: anegative bias caused by measurement delays and bnegative bias caused by BM violation. Uncertainty in the estimates is expressed in
terms of 95% confidence intervals (CI), or, in the case of Bayesian inference, by 95% high posterior density intervals (HPDs).
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0.33, CI [0.20, 0.46], as well as the recent results from
Blanquart et al. (2017) who conducted a POUMM and a
PMM analysis on a whole-genome meta-data set (1,581
sequences from several European countries) reporting spVL
heritability of 0.31, CI [0.15, 0.43]. In analogy with our ANOVA
approach, Blanquart et al. (2017) measured the Pearson cor-
relation in “cherries” partitioned by phylogenetic distance,
showing a similar pattern of decreasing correlation with dij.
Contrary to the UK data though, Blanquart et al. (2017) have
shown nearly equal statistical support for PMM (a¼0,
AIC¼ 3,343.2) and POUMM (a¼7.6, 95% bootstrap CI [1.2,
10.0], AIC¼ 3,344.5) for 1,581 subtype B pol sequences and
spVL measurements (table 1 in Blanquart et al. 2017). This
equal support fot the PMM and the POUMM models might
indicate that none of the two models is a good fit to the data
(i.e., flat likelihood surface), or that the likelihood surface for
the POUMM is bimodal with modes at a¼0 and at a¼7.6. A

Bayesian POUMM fit with uninformative prior could be used
to reveal such anomailies (see Materials and Methods and
supplementary fig. S8, Supplementary Material online).

To sum up, all data sets support the hypothesis of HIV
influencing spVL (H2>0.2). The particular estimates provided
here should be interpreted as lower bounds for H2, because
the partial quasispecies transmission, the noises in spVL meas-
urements and the noise in transmission trees are included
implicitly as environmental (nontransmittable) effects. The
nonzero heritability motivates further HIV whole-genome se-
quencing (Metzner 2016) and genome-wide studies of the
viral genetic association with viral load and virulence.

A Critical View on the POUMM
The OU process has found previous applications as a model
for stabilizing selection in macroevolutionary studies (Lande
1976; Felsenstein 1988; Hansen 1997; Hansen and Bartoszek
2012) and references therein. As a contribution of this work,
we have shown that the OU process is well adapted for the
modeling of pathogen evolution along transmission trees in
both, neutral as well as selection scenarios. The key advantage
of the OU process to the BM process is the way in which the
phylogenetic distance between a pair of tips enters in the
expression for their correlation (eq. 3). This is a crucial advan-
tage in modeling the loss of resemblance caused by within-
host evolution of the pathogen (fig. 3 and supplementary fig.
S7, Supplementary Material online). But there is a caveat
coming along with this property of the OU-model—both,
the rate at which a trait evolving under OU adapts toward
h and the rate of correlation decay for a pair of tips are
governed by the same parameter: a. This is why a significantly
positive estimate for a does not necessarily imply stabilizing
selection. This was clearly shown in the neutral/neutral sce-
nario of the toy-model simulations (supplementary fig. S6B,
Supplementary Material online). A further extension of the
POUMM using two separate parameters for the rate of at-
traction toward h and for the rate of decorrelation would
allow to disentangle the two forces.

Most of the above-mentioned studies and the accompa-
nying software packages implementing phylogenetic OU
models have assumed that the whole trait evolves according
to an OU process, usually disregarding the presence of a bi-
ologically relevant nonheritable component e or treating it as
a measurement error whose variance is a priori known
(FitzJohn 2012). Having the OU process act on the genotypic
values rather than whole trait values is a simplifying assump-
tion facilitating mathematical processing (Mitov and Stadler
2016). However, our toy model simulations have shown ro-
bustness and statistical power of the POUMM in complicated
scenarios combining trait-based selection at the within- and
between-host levels.

A last criticism that can be addressed to the POUMM
method is that it is unaware of between-host selection and
demographic processes, which may result in a correlation
between tree structure and trait values (e.g., higher branching
density in clades with higher z). As noted by Leventhal and
Bonhoeffer (2016), this is a general issue with phylogenetic
comparative approaches assuming a global evolutionary

FIG. 6. A comparison between H2H2-estimates from the UK HIV-co-
hort and previous estimates on African, Swiss, and Dutch data. (A)
Estimates with minimized measurement delay (dark cadet-blue) and
POUMM estimates (green); (B) Down-biased estimates due to higher
measurement delays (light-blue) or violated BM-assumption
(brown). Confidence is depicted either as segments indicating esti-
mated 95% CI or P values in cases of missing 95% CIs. References to the
corresponding publications are written as numbers in superscript as
follows: 1: Tang et al. (2004); 2: Hecht et al. (2010); 3: Hollingsworth
et al. (2010); 4: van der Kuyl et al. (2010); 5: Lingappa et al. (2013); 6:
Yue et al. (2013); 7: Alizon et al. (2010); 8: Shirreff et al. (2013); 9:
Hodcroft et al. (2014); 10: Blanquart et al. (2017); 11: Bertels et al.
(2018); 12: this work. For clarity, estimates from previous studies,
which are not directly comparable (e.g., previous results from Swiss
MSM/strict data sets; Alizon et al. 2010).
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process acting on the whole phylogeny. An unexplored alter-
native would be to associate different instances of POUMM
to different clades in the tree based on prior knowledge about
heterogeneity between these clades.

Outlook
ANOVA-CPP and POUMM have great potential to become
widely used tools in the study of pathogens. The accompa-
nying R-package patherit provides a common interface for
using the two methods on a transmission tree and phenotype
data (Materials and Methods). ANOVA-CPP works on pairs
of trait values from carriers of nearly identical strains and can
be easily extended to groups of variable size (Lynch and Walsh
1998; Anderson et al. 2010). Thus, ANOVA-CPP is ideal for
slowly evolving pathogens such as DNA-viruses, bacteria, and
protozoa, where clusters of patients carrying identical-by-
descent (IBD) strains are frequently found. For example,
Anderson et al. (2010) identified 27 clusters of two to eight
carriers of IBD strains in a small set of 185 malaria patients,
that is, 41% of the patients participated in clusters. On the
other hand, IBD-pairs are rare for rapidly evolving RNA-
viruses, such as HIV and HCV. For instance, we identified
only 116 CPPs in a large data set of 8,483 HIV-sequences, that
is, <3% of the patients involved in IBD-pairs. However, the
rapidly accumulating sequence diversity of RNA-viruses
allows building large-scale phylogenies, which approximate
transmission trees between patients. Thus, RNA-viruses
should make the ideal scope for the POUMM. If the trans-
mission tree is large enough, it is be possible to compare the
estimates from the two methods and to analyze the profile of
the correlation in phylogenetic pairs, as we did in the UK HIV
data (fig. 3 and supplementary fig. S2, Supplementary Material
online). We believe that, together, the two methods enable
accurate and robust heritability estimation in a broad range of
pathogens.

Materials and Methods
The subsections below provide details on the different heri-
tability estimators (based on the categorization by input type,
table 1) and the toy-model simulations.

Grouping by Identical Infecting Strain
Adjusted Coefficient of Determination
We calculated R2

adj based on equation (6) (table 1).

One-Way Analysis of Variance
We calculated rA based on equation (7) (table 1). A more
detailed description of one-way ANOVA can be found in
chapter 18 of Lynch and Walsh (1998).

Donor–Recipient Couples
To calculate the DR regression slope (b, b0, bD1

), we used
equation (8) (table 1).

Phylogenetic Pairs
To calculate ICC in phylogenetic pairs (rA, rA;D1

, rA;V1
, rA;10�4 ),

we used one-way ANOVA (eq. 7, chapter 18 of Lynch and
Walsh 1998). To calculate confidence intervals for the HIV

data, we used the R-package “boot” to perform 1,000-repli-
cate bootstraps, upon which we called the package function
boot.ci() with type¼“basic.” These confidence intervals were
fully contained in the standard ANOVA confidence intervals,
based on the F-distribution (Lynch and Walsh 1998), which
were slightly wider (not reported).

Phylogenetic Methods
Phylogenetic Mixed Model
The PMM assumes an additive model zðtÞ ¼ gðtÞ þ e, in
which z(t) represents the trait value at time t for a given
lineage of the tree, g(t) represents a heritable (genotypic)
value at time t for this lineage and e represents the environ-
mental (nonheritable) contribution. The genotypic value, g(t),
is assumed to evolve according to a branching Brownian
motion process defined by the stochastic differential
equation:

dgðtÞ ¼ rdWt;

gð0Þ ¼ g0

(14)

where g0 is the initial genotypic value at the root, Wt is the
standard Wiener process, and r>0 is the unit-time SD
(Grimmett and Stirzaker 2001).

The environmental contribution e can change along the
tree in any way as long as the values e at the tips are inde-
pendent and identically normally distributed (i.i.n.d.) with
mean 0 and variance r2

e . In the case of modeling an epidemic,
e represents the total contribution from the host immune
system, other host factors (e.g., age, sex), the host environ-
ment and measurement error; it obtains a value at the be-
ginning of an infection, which can stay constant or change
during the course of an infection, but is uncorrelated to the
immune system and cofactors of other hosts.

Phylogenetic Ornstein–Uhlenbeck Mixed Model
The POUMM is an extension of the PMM replacing the BM
assumption with an assumption of an Ornstein–Uhlenbeck
(OU) process for the genotype evolution. The OU-process
represents a continuous time random walk, which tends to
move around a long-term mean value with greater attraction
when the process is further away from that value (Uhlenbeck
and Ornstein 1930; Hansen 1997). Technically, this is accom-
plished by adding an attraction term to equation (14):

dgðtÞ ¼ a½h� gðtÞ�dt|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Attraction to h

þ rdWt|ffl{zffl}
Brownian motion

; (15)

where h denotes the long-term mean and a>0 is the attrac-
tion strength. Since in the limit a! 0 the attraction term
vanishes and only the BM term remains, the OU-process
represents a generalization of BM. As in the PMM, an inde-
pendent white noise term e � Nð0; r2

eÞ is added to g(t) at
the tips.

Phylogenetic Heritability
Introduced as a term with the PMM method (Housworth
et al. 2004), the phylogenetic heritability quantifies how much
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of the trait variance is attributable to g based on a fit of the
assumed evolutionary model (in this case, BM or OU). For the
BM and the OU processes, the genotypic variance is a func-
tion of the model parameters and the time-distance from the
root of the ultrametric tree, t (Hansen 1997; Housworth et al.
2004):

VarBMðt; rÞ ¼ r2t (16)

VarOUðt; a; rÞ ¼ r2

2a
1� expð�2atÞÞ:ð (17)

Given the assumption that g and e are uncorrelated, the
phenotypic variance is the sum of the genotypic variance and
r2

e . Therefore, the phylogenetic heritability is also a function of t:

H2
BMðt; r; reÞ ¼

VarBMðt; rÞ
VarBMðt; rÞ þ r2

e

¼ r2t

r2tþ r2
e

; (18)

H2
OUðt; a; r; reÞ ¼

VarOUðt; a; rÞ
VarOUðt; a;rÞ þ r2

e

¼
r2

2a
ð1� expð�2atÞÞ

r2

2a
1� expð�2atÞ þ r2

e :
�

(19)

The above dependency of H2
OU and H2

BM on time is posing
a problem in the case of a nonultrametric transmission tree,
because the tips are at different time-distance from the root
and do not share the same genotypic and phenotypic vari-
ance. We tested two possible work arounds: 1) evaluating the
heritability at the mean root-tip distance, �t (Leventhal and
Bonhoeffer 2016); and 2) using an empirical definition of the
phylogenetic heritability based on the empirical variance in
the observed population:

H2
e ¼ 1� r2

e

s2ðzÞ : (20)

PMM and POUMM Log-Likelihood
The PMM and the POUMM log-likelihood represents the log-
probability density of the observed data at the tips of the tree
for given values of the model parameters, H. For PMM,
H ¼< g0; r;re >; for POUMM H ¼< g0; a; h; r; re >.
Given that the two models are Gaussian, the log-likelihood is
defined as the Gaussian log-probability density function:

‘‘ðHÞ ¼ lnfðzjHÞ ¼ � 1

2
ðNlnð2pÞ þ lnjVHj þ

ðz� lHÞ
0V�1

H ðz� lHÞÞ;
(21)

where z is the observed vector of trait values at the tips, lH is
the mean vector at the tips (li ¼ g0 in the case of BM; li

¼ expð�atiÞg0 þ ð1� expð�atiÞÞh in the case of OU),
and VH is the variance covariance matrix with off-diagonal
elements given by the nominators and diagonal elements
given by the denominators in equations (2) and (3),
respectively.

PMM and POUMM Inference in the Toy-Model Simulations
The POUMM and PMM inference was done using maximum
likelihood (ML) fit.

PMM and POUMM Inference on HIV Data
For HIV data, in addition to an ML-fit, we performed a
Bayesian (MCMC) fit using an adaptive Metropolis algorithm
with coerced acceptance rate (Vihola 2012) written in R
(Scheidegger 2012).

The MCMC sampling was performed on the parameters
g0, a, h, H2ð�tÞ and r2

e (for likelihood and posterior density
calculation, the parameter r2 was mapped back from H2ð�tÞ
according to eqs. 18 and 19). The prior was specified as a
joint distribution of independent variables: ðg0; a; h; H2ð�tÞ;
r2

eÞ � N ð4:5; 3Þ � Expð0:02Þ � N ð4:5; 3Þ � Uð0; 1Þ
� Exp ð0:02Þ. In specifying the prior distribution, the main
objective has been to use a weakly informed prior, thus,
allowing the MCMC to explore a large volume of the param-
eter space without overwriting the signal in the data. This was
verified by the nearly flat prior densities contrasting with
sharply peaked posterior densities proving the presence of
strong signal in the data (compare prior vs. posterior densities
on supplementary fig. S8B, Supplementary Material online).
To validate that the results were not sensitive to the param-
etrization and the definition of the prior, we tested other
parametrizations and priors (e.g., ða; h; r2; r2

eÞ � Expð0:01Þ
�Uð0; 100Þ � Expð0; 10�4Þ � Expð0:01Þ).Theseresultedin
matchingposterior means and HPDs forall sampled and derived
parameters(notreported).TheadaptiveMetropolisMCMCwas
run for 4.2Eþ 06 iterations, of which the first 2Eþ 05 were used
for warm-up and adaptation of the jump distribution variance–
covariancematrix.Thetargetacceptanceratewassetto0.01and
the thinning interval was set to 1,000. The convergence and
mixing of the MCMC was validated by visual analysis (supple-
mentary fig. S8A, Supplementary Material online) as well as by
comparison to a parallel MCMC-chain started from a different
initial state.Calculationof 95% HPD was doneusingthefunction
“HPDinterval” from the coda package (Plummer et al. 2006).

Computer Simulations of the Toy Epidemiological
Model
The parameters defining the within- and between-host dy-
namics used in the simulations are written in supplementary
table S2, Supplementary Material online.

The simulations were implemented as stochastic random
sampling of within- and between-host events (i.e., risky con-
tact, transmission, mutation, diagnosis, death) in discrete
time-steps of length 0.05 (arbitrary time-units). The transmis-
sion history as well as the history of within-host strain sub-
stitutions was preserved during the simulations in order to
reproduce exact transmission trees and to extract donor and
recipient values at moments of transmission for the calcula-
tion of b0.

Software
This study relies on two accompanying R-packages:
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• toyepidemic implementing the toy epidemiological model;
available at https://github.com/venelin/toyepidemic.git,
last accessed January 9, 2018; and

• patherit providing a common interface for evaluating the
various heritability estimators on simulated and real data.
The pair correlation and regression slope estimators are
implemented as functions in this package; the phyloge-
netic heritability estimators (PMM and POUMM) are
implemented as external calls to the R-package
POUMM (Mitov and Stadler 2017). The patherit package
is available at https://github.com/venelin/patherit.git, last
accessed January 9, 2018.

External Dependencies
The following third-party R-packages were used: ape v3.4
(Paradis et al. 2004), data.table v1.9.6 (Dowle and Srinivasan
2017), adaptMCMC v1.1 (Scheidegger 2012), Rmpfr v0.6-0
(Maechler 2016), and coda v0.18-1 (Plummer et al. 2006).
All programs have been run on R v3.2.4 (R Core Team 2016).

Data Availability
All scripts for performing the simulations and real data anal-
yses presented in this paper are available at https://github.
com/venelin/Estimating-Pathogen-Trait-Heritability.git, last
accessed January 9, 2018. Large output data files from the
toy model simulations are available upon request to the
authors. The UK HIV data are not made available at the above
address, because the authors do not have the right to redis-
tribute this data (readers are referred to the UK drug resis-
tance database).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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In the sections below, we provide additional details and evidence in support of the statements made

in the main text. In section ”Approximations in equations 4 and 5”, we clarify the approximations used

in the main text. In secton ”Why does PMM underestimate the correlation between PPs in the UK-

data?”, we investigate in some depth the observed bad fit of the PMM model to the UK data. In section

“Analysis of bias in H2-estimates in the toy-model simulations”, we explain in detail the causes of bias

in H2-estimators, which were encountered in the toy model simulations. In section “Covariance between

donor and recipient values in the toy model”, we show analytically that in a neutral drift scenario, when

all pathogen strains are encountered at equal frequencies, the covariance between donor and recipient

values decays exponentially with the evolutionary time, dij between the moments of trait measurement.

In section “Choosing the threshold phylogenetic distance dij
′ in ANOVA-CPP”, we discuss the choice of

threhold on dij (e.g. dij
′=D1 and dij

′=10−4) when defining closest phylogenetic pairs. Supplementary

tables and figures are provided at the end of this document.

Approximations in equations 4 and 5

To express the correlation in phylogenetic pairs under the PMM and the POUMM ML fits as functions

of dij (eq. 4 and 5), we applied three approximations:

• In eq. 2 and 3, we replaced t by the mean root-tip distance in the tree, t̄. This approximation was

reasonable, because the mean root-tip distance did not vary substantially between different strata (fig.

3). The mean root-tip distance was 0.15 in the left-most decile going gradually down to 0.14 in the right-

most decile. We also performed linear regression of the root-tip distance, t, on the phylogenetic distance,

dij in the 1917 PPs. This was significant but with negligible slope and coefficient of determination

((̂t)=0.15−0.13∗dij, p<0.01, R2
adj =0.01), showing that PPs of all phylogenetic distances were spread

nearly uniformly across the tree. Substituting t with its linear regression on dij instead of t̄ did not

result in any noticeable difference and is not reported.

c© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

For permissions, please email: journals.permissions@oup.com
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• In eq. 2 and 3, we used the relationship between tij and dij. This was the only way to incorporate dij in

eq. 2. In an ultrametric tree, tij is an exact linear function of dij, namely, tij = t−0.5dij, where t is the

root-tip distance. In the non-ultrametric UK tree, the OLS regression of tij on dij was t̂ij =0.15−0.63dij,

p<10−16, R2
adj =0.24.

• In eq. 3, we approximated exp(−8.35+36.47dij) with 0, which was a valid approximation on the scale

of the other terms in the equation and for the range of phylogenetic distances (dij∈ [0,0.14]) in the UK

tree.

The above approximates were validated visually by comparing the analytical curves corresponding to

equations 4 and 5 with the corresponding brown and green points and error-bars on fig. 3.

Why does PMM underestimate the correlation between PPs in the UK data?

We have shown in the main text that, the phenotypic correlation between members of phylogenetic

pairs depends on their phylogenetic distance, dij: members of pairs with small dij tend to have higher

phenotypic correlation compared to members of pairs with big dij (fig. 3). For PMM, the only way to

incorporate this information is indirect, namely, through the relationship between dij and the root-mrca

distance, tij. In the non-ultrametric UK tree, this relationship is rather weak: the slope of the OLS

regression of dij on tij equals -0.37 and is significant (p<0.01) but the coefficient of determination of this

regression, R2
adj, is (only) 0.24 (fig. S2A). Thus, the principal source of information for fitting the PMM

parameters, σ2 and σ2
e , is the assumed linear relationship between the observable correlation between

pairs of tips and the two distances involved in eq. 2: the root-mrca distance tij and the root-tip distance,

t. Noticing that the correlation between the lg(spVL)-values in phylogenetic pairs is a covariance to

variance ratio (eq. 2 and 3), we analyze how PMM fits to these two components in the UK data (fig. S2

B and C). The panels B and C on fig. S2 show that the covariance and the variance progress at different

rates with tij and t respectively. PMM is not able to model this difference in the rates, because it uses a

single parameter, σ2, to model both of them. We notice that the ML estimate for σ2 fits well to the linear

increase in the variance (parallel brown and black lines on fig. S2C) but underestimates the increase in

the covariance (non-parallel brown and black lines on fig. S2B). This indicates that a linear model of

the covariance as a function of tij is rather inappropriate and no particular value for σ2 could result in

a better fit (higher likelihood). As a result, the penalty on the PMM likelihood is minimized when the

parameter σ2 is fit to the increase in the variance, neglecting the covariance. Finally, this leads to the

observed underestimate of the correlation in the closest phylogenetic pairs.
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Analysis of bias in H2-estimates in the toy-model simulations

In order to understand the origin of the bias in the different toy-model scenarios, we used variance

decomposition into the heritable component, σ2
G and the non-heritable component σ2

e . Most of the biases

observed on fig. 4 could be explained by a bias in one or both of these two components. The main source

of these biases was the within-host evolution causing a decrease in the measured covariance between

donor-recipient partners or phylogenetic pairs. Also, we identified various sampling biases introduced by

within-/between-host selection and filtering of the data. We clarify these sources of bias in the following

subsections.

Neutral evolution of the trait within hosts

This phenomenon consists in a random change of the trait value caused by pathogen mutation. As a

result, the phenotypic correlation between donors and recipients tends to decrease. We show later that,

in a neutral scenario, this correlation decay is expected to be exponential in the phylogenetic distance,

dij. As a result, all H2-estimators neglecting or improperly modeling this decay are negatively biased.

The most affected estimators are bdij , rA,dij , H
2
BM(t̄) and H2

BMe (fig. 4); see also the decreasing sample

donor-recipient covariance s(zdon,zrcp) on fig. S4.

Directional selection within a host

This phenomenon consists in mutant strains contributing to a higher trait value, e.g. strains with higher

reproductive capacity in the case of viral load, getting selected within each host. As a result a population

of newly infected hosts tends to have higher genotypic variance than a population of hosts which have

undergone within-host evolution (notice s2(Grcp,0)>s
2(G) on fig. S4B). This explains the positive bias

of b0 with respect to H2 on fig. 4B in the main text. Another possible effect of within-host selection is

a convergent evolution in donors and recipients towards strains, which have higher fitness on average in

the population. Intuitively, this could lead to a slight increase in phenotypic covariance and, therefore, a

positive bias in b. Such a bias was not obvious in the toy-model simulations (s(zdon,0,zrcp,0)>s(zdon,zrcp)

in all simulations, fig. S4B), because the convergent evolution was leading to a decreasing overall genetic

and phenotypic variance in the population (see decreasing s2(G) and s2(z) with dij on fig. S4B and S5B).

Stabilizing selection between hosts

In case the trait is positively correlated with pathogen load, virulence and per contact transmission rate,

hosts with very high pathogen load tend to be more infectious but stay infectious for a short period

of time due to earlier diagnosis or death; hosts with very low pathogen load are infectious for a longer

time but transmit very rarely. Thus, hosts with intermediate values of pathogen load have the highest
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transmission potential on average (Fraser et al. 2007). This leads to a sampling bias in donor-recipient

estimators - the donors have a narrower distribution than the overall population (s2(zdon)<s2(z) on Fig.

S5C). Intuitively this should lead to a positive bias in b0 with respect to H2 (because the denominator

(s2(zdon) is smaller). However, this was not confirmed by the toy-model simulations because the genotypic

variance in the donor-recipient values at the moment of transmission was also smaller than that at the

population level (s(zdon,0,zrcp,0)≈s2(G0)<s
2(G) on fig. S4C).

Combined within- and between-host selection

This results in a combination of the sampling biases due to each of the two selection phenomena (previous

subsections).

Non-stationary trait distribution during the epidemic

The density of the trait values evolves during the epidemic due to continuous change in the frequencies

of the different pathogen strains, introduction of new strains through de-novo mutation, change in the

frequencies of infected host types and a number of demographic factors such as migration, prevention,

diagnosis and treatment. Thus, the broad-sense heritability, H2, is a dynamic property of the population

which changes through time. The direct estimator R2
adj obtained over a grouping by identical strain

in patients sampled at different times has the meaning of a summary statistic averaging over the time

of the epidemic. Plotting the phylogenetic estimators H2
BM(σ,σe,t) and H2

OU(α,σ,σe,t) over time can

help understanding the above dynamics. This, however, depends strongly on the goodness of fit of the

phylogenetic model (e.g. BM or OU) to the data.

Violation of phylogenetic model assumptions

The phylogenetic estimates of heritability are valid only if the model assumptions are at least partially

met. For example, in this article, we have shown how an inaccurate assumption about the form of the

correlation between two tips in the PMM model can lead to a significant negative bias in phylogenetic

heritability.

Clarifying the observed positive bias in rA[id]

Here we demonstrate a positive bias in rA with respect to R2
adj for small number of groups (genotypes)

K. We show that this bias vanishes for bigger values of K, i.e. K>24, given that the genotypic values

are sampled from a normal distribution. For each K∈{3,6,12,24,48} we simulate 100 datasets with K

genotypes and varying number of carriers for each genotype. We draw genotypic values from a normal

distribution and add random (white) noise to them to construct the phenotype. After estimating R2,

R2
adj and rA for each dataset, we report the average values for each K.
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library(data.table)

library(patherit)

# grand mean and variance of group effects

mu <- 3.5

sigma2a <- .2

# within-class variance

sigma2e <- 0.36

#number of simulated data-sets with K groups and ni individuals per group

nIter <- 100

# make results reproducible

set.seed(20)

test <- list()

# number of classes/groups

for(K in c(3, 6, 12, 24, 48, 96)) {

test[[as.character(K)]] <- t(sapply(1:nIter, function(iter) {
# sample group means at each iteration from a normal distribution

ai <- rnorm(K, mean=mu, sd=sqrt(sigma2a))

# numbers of sampled individuals per group

ni <- sample(20:50, K, replace=TRUE)

# generate data

data <- data.table(g=do.call(c, lapply(1:K, function(k) rep(k, ni[k]))), key=’g’)

data[, z:=rnorm(ni[g], mean=ai[g], sd=sqrt(sigma2e)), by=g]

data[, G:=mean(z), by=g]

data[, e:=z-G]

rAValues <- rA(epidemic=NULL, data=data, GEValues=NULL, by=’g’, report=TRUE)

with(rAValues, data[, c(K=K, H2true=sigma2a/(sigma2a+sigma2e),

R2=var(G)/var(z), R2adj=1-(N-1)/(N-K)*var(z-G)/var(z),

rA=H2aov)])

}))
}

t(sapply(names(test), function(K) {
colMeans(test[[K]])

}))

## K H2true R2 R2adj rA

## 3 3 0.3571429 0.2304160 0.2147992 0.2768490

## 6 6 0.3571429 0.2987824 0.2816688 0.3181378

## 12 12 0.3571429 0.3475622 0.3298251 0.3494137

## 24 24 0.3571429 0.3622040 0.3441696 0.3539454

## 48 48 0.3571429 0.3655049 0.3472988 0.3522200

## 96 96 0.3571429 0.3720558 0.3537375 0.3562131

The results show that rA dominates R2
adj on average, in particular for small values of K, i.e. K612.

For bigger K, the two estimators are asymptotically equal.
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Clarifying the observed difference between H2
BM(t̄) and H2

BMe in toy-model simulations

As another detail, we notice that the expected correlation under the PMM ML fit, rBM , was significantly

positively biased with respect to the correlation, rA, measured in PPs (brown line versus brown dots on

fig. S7). Investigating these cases, we found that these positive biases were due to the use of the mean

root-tip distance t̄ in the formulation of rBM (eq. 2), the bias being less pronounced if using the median or

a higher quantile of the root-tip distance. Since, at dij =0, rBM is equal to the phylogenetic heritability,

H2
BM(t̄), in these cases, we observe a value of H2

BM(t̄) closer to the true heritability value, R2
adj (black

horizontal line on fig. S7). This could lead to a wrong conclusion that H2
BM(t̄) is less biased than H2

BMe.

In fact though, this is merely the effect of cancelling out two biases with opposite directions. Compared

to the PMM, the POUMM produced a better fit to the decaying correlation in all simulations (green

dots and error-bars on fig. S7).

Covariance between donor and recipient values in the toy model

One of the main results of this article is the observation that the accuracy of a heritability estimator

depends strongly on how it accounts for the within-host evolution of the pathogen taking place between

transmission events and measurement. This becomes obvious from the fact that both, real data and the

toy model simulations, showed a pattern of decaying correlation between phylogenetic pairs as a function

of their phylogenetic distance, dij (fig. 3 and fig. S7). Is this pattern of decaying correlation a general

characteristic of epidemics? Here, we use a simplified version of the toy model allowing an analytical

approach to this question.

We consider a version of the toy model, in which there is one SNP in the pathogen genotype with

two possible alleles and there are two possible host-types. We denote the four genotype×host-type

combinations as subscripts 00, 01, 10, 11, where the first index denotes the pathogen genotype and the

second index denotes the host-type. The trait values are denoted as z00, z01, z10 and z11; the frequencies

of the four genotype×host-type combinations in the populations are denoted as f00, f01, f10 and f11. We

use the symbol f·0 =f00+f10 to denote the total frequency of host-type 0 and f·1 =f01+f11 to denote

the total frequency of host-type 1. We assume that the evolution of the pathogen strain within a host

follows random drift - at time dij/2 after infection, the strain infecting a host has been substituted by a

mutant strain with probability ν, regardless of the trait value before and after substition; the strain has

remained unchanged with probability 1−ν.

This mechanism of within-host mutation is summarized on fig. S9A. For simplicity, we assume a

generation-based dynamics, in which transmission to new susceptible hosts occurs at fixed moments in
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time separated by a period dij/2. At every generation, each member of the infected population transmits

his/her currently carried pathogen to a random susceptible individual and becomes uninfectious,

(although, he/she remains infected with the pathogen). The recipient host transmits his infection at

the next generation and becomes uninfectious on his turn. We assume an infinite susceptible pool with

fixed frequencies of the two host-types. Given that there is no selection with respect to host-type, we can

assume that the frequencies of the host-types in the infected population equals the host-type frequencies

in the susceptible population. The frequencies of the two pathogen strains in the infected population can

evolve as a result of within-host mutation. However, in the absence of within-host selection, the strain

frequencies conditioned on host-type would equalize several generations after the onset of epidemic.

With the above simplified version of the toy model, it is possible to express the covariance between

a donor and recipient trait value at time dij/2 after the transmission has taken place. We do this in

two steps: first, we express the covariance in terms of the substitution probability ν; then, we use a

2-nucleotide form of the Jukes-Cantor 69 substitution model to express ν in terms of evolutionary time.

Denoting the donor value by zdon and the recipient value by zrcp, we start from a known property for the

covariance:

Cov(zdon,zrcp)=E[zdonzrcp]−E[zdon]E[zrcp]

In the case of neutral evolution and sufficiently large population size, we can assume that donors and

recipients share the same frequencies of genotype × host-type combinations. Thus, we write:

E[zdon]=E[zrcp]=f00z00+f01z01+f10z10+f11z11

To obtain the expectation of the product zdonzrcp, it suffices to sum up all possible products of donor

and recipient values weighted by their expected frequencies (fig. S9A):

7
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E[zdonzrcp] = f00

(
(1−ν)f·0(1−ν)z00z00+(1−ν)f·0νz00z10+(1−ν)f·1(1−ν)z00z01+(1−ν)f·1νz00z11+

νf·0(1−ν)z10z00+νf·0νz10z10+νf·1(1−ν)z10z01+νf·1νz10z11

)
+

f01

(
(1−ν)f·0(1−ν)z01z00+(1−ν)f·0νz01z10+(1−ν)f·1(1−ν)z01z01+(1−ν)f·1νz01z11+

νf·0(1−ν)z11z00+νf·0νz11z10+νf·1(1−ν)z11z01+νf·1νz11z11

)
+

f10

(
(1−ν)f·0(1−ν)z10z10+(1−ν)f·0νz10z00+(1−ν)f·1(1−ν)z10z11+(1−ν)f·1νz10z01+

νf·0(1−ν)z00z10+νf·0νz00z00+νf·1(1−ν)z00z11+νf·1νz00z01

)
+

f11

(
(1−ν)f·0(1−ν)z11z10+(1−ν)f·0νz11z00+(1−ν)f·1(1−ν)z11z11+(1−ν)f·1νz11z01+

νf·0(1−ν)z01z10+νf·0νz01z00+νf·1(1−ν)z01z11+νf·1νz01z01

)

Taking the difference of E[zdonzrcp]−E[zdon]E[zrcp] and grouping on the degrees of ν, we obtain a

polynomial of degree two of ν:

Cov(zdon,zrcp)=Aν2+Bν+C

The coefficients A, B and C are algebraic expressions of the frequencies and trait values:

A = (f00(z00−z10)+f10(z00−z10)+(f01+f11)(z01−z11))(f·0(z00−z10)+f·1(z01−z11))

B = 2f10f·0z00z10+f11f·0z01z10+f10f·1z01z10−2f10f·0z
2
10+f11f·0z00z11+

f10f·1z00z11+2f11f·1z01z11−2f11f·0z10z11−2f10f·1z10z11−2f11f·1z
2
11+

f01(2f·1z01(−z01+z11)+f·0(−2z00z01+z01z10+z00z11))+

f00(−2f·0z00(z00−z10)+f·1(−2z00z01+z01z10+z00z11))

C = f00f·0z
2
00+f01f·0z00z01+f00f·1z00z01+f01f·1z

2
01+f10f·0z

2
10+f11f·0z10z11+

f10f·1z10z11+f11f·1z
2
11−(f00z00+f01z01+f10z10+f11z11)

2

In the case of neutral drift, f00 =f10 and f01 =f11. Substituting 1−f·0 for f·0, the expression for the

covariance simplifies to:

Cov(zdon,zrcp)=
1

4
(1−2ν)2(z01−z11+f·0(z00−z01−z10+z11))

2

Assuming a two-nucleotide Jukes Cantor 69 model with mutation rate λ, the probability of mutation

at a site in the genetic sequence is expressed as a function of evolutionary time ν(t)=0.5−0.5exp(−λt)

(Yang, 2006). Thus, in the case of neutral drift, the covariance between the donor and the recipient

8
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value at time dij/2 after the transmission can be expressed in terms of the total evolutionary time, dij,

separating the two hosts:

Cov(zdon,zrcp)=exp(−λdij)
1

4
(z01−z11+f·0(z00−z01−z10+z11))

2

The above expression for the covariance between donor and recipient values represents an exponential

decay function of dij - it has a non-negative value at dij =0 and converges exponentially towards 0

as dij→∞. It is interesting to ask wether the above pattern of exponentially decaying covariance is

preserved in the case of multiple loci (many possible pathogen genotypes) as well as in cases of within-

and between-host selection. An analytical treatment of this question is beyound the scope of this article.

However, using simulations of the toy model, we have shown that the pattern of exponential decay seems

to be preserved in the case of the neutral/neutral scenario, that is, when each pathogen genotype is

encountered at equal frequency for each host-type (fig. S7). Biologically, this reflects a situation, where

the donor and recipient host exhibit similar trait values shortly after transmission, but later on tend

to have uncorrelated values as a result of random mutation in the two hosts. In infinite time after the

transmission, the correlation between the two hosts’ trait values should converge to 0. In the cases of

within- or between-host selection, the covariance between the trait values of a donor and a recipient would

be influenced by additional factors such as similar age, race or habitat. This can result in convergent

evolution of the pathogens within the two hosts towards strains which are best adapted to the shared

environmental conditions. In this case, the covariance would deviate substantially from an exponential

decay function of dij and is even not guaranteed to converge to 0. This reaffirms that any parametric

model of the covariance (and therefore, correlation) between transmission couples needs to be validated

against empirical estimates (see fig. 3 and Fig. S2).

Choosing the threshold phylogenetic distance dij
′ in ANOVA-CPP

Choosing an appropriate value for the threshold dij
′ is one of the tricky aspects of ANOVA-CPP. This

choice is a trade-off between minimizing the negative bias due to within-host evolution (dij
′ close to 0)

and maximizing the precision in terms of narrow confidence interval. While it is impossible to measure

the bias in the absence of knowledge about the true value, there are ways to measure the precision, e.g. by

taking the length of the 95% confidence interval. Thus, one way to define an optimality criterion is “the

minimum value of dij
′, for which the 95% confidence interval is narrower than some predefined length”.

A practical way to do this is to consider different stratifications of the phylogenetic pairs as shown on

fig. S1. In the toy-model simulations, we have chosen the first decile, i.e. dij
′=D1, because this threshold

9
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was suitable for demonstrating the negative bias due to within-host evolution (i.e. a difference between

bD1
and bdij and loss of precision). In the real HIV data, the choice dij

′=10−4 was based on empirical

observations (see text and fig. 5).
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Table S1. PMM and POUMM fit to lg(spVL) data from the UK HIV cohort.

N Model AICc Type g0 α θ σ σe H2(t̄) H2
e

8
,4

8
3

P
M

M

21
,4

87

MLE 4.49 - - 0.65 0.84 0.08 0.06

Mean 4.49 - - 0.67 0.83 0.08 0.06

HPD [4.31, 4.66] - - [0.5, 0.84] [0.82, 0.85] [0.05, 0.12] [0.02, 0.1]

P
O

U
M

M

21
,4

55

MLE 5.54 28.78 4.45 2.97 0.77 0.21 0.2

Mean 5.44 - - 3.11 0.77 0.21 0.21

HPD [4.06, 7.25] [16.64, 46.93] [4.41, 4.49] [1.95, 4.37] [0.73, 0.8] [0.14, 0.29] [0.13, 0.29]

11
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Table S2. Within- and between-host dynamics of the toy epidemiological model.

Scope Parameter neutral select

B
et

w
ee

n
-h

o
st

Natural birth rate λ=117.6

Natural per capita death rate µ=1/850

Per capita recovery rate ρ= 1/48

Per capita contact rate κ∈{ 1
2
, 1
4
, 1
6
, 1
8
, 1
10
, 1
12
}

Per capita risky contact rate (S:

current proportion of susceptible

in the pop.)

S×κ

Per risky contact transmission

probability

γneutral = .45 γ(z)=γmin+ (γmax−γmin)(γ50)
γk

10zγk+(γ50)
γk

, where

γmin = .3, γmax = .6,γ50 =103,γk =1.4

Per capita death rate for infected

individuals

δneutral = .01 δ(z)=µ+ 10zDk+(D50)
Dk

Dmin10
zDk+Dmax(D50)

Dk
, where

Dmin =2,Dmax =300,D50 =103,Dk =1.4

W
it

h
in

-h
o
st

Per locus pathogen mutation rate νneutral = .01 ν(z)= νmax(ν50)10
zνk

10zνk+(ν50)
νk

, where νmax = .2,ν50 =

103,νk =1.4

Rate of substitution of strain

xj for xi, where xi 6=xj at a

single locus, l, Ml is the number

of alleles at locus l, and the

corresponding values are zi and zj

ξl=
νneutral
Ml−1 ξl,i←j(zi,zj)=





ν(zi)

Ml−1 if ν(zi)<ν(zj)

0 , otherwise

12
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FIG. S1. Different stratifications of the phylogenetic pairs in the UK tree. A - box-plots of the trait values show
nearly identical distributions (equal mean and interquartile range) in the different strata. B - correlation profiles in different
stratifications. Black and magenta points with error-bars denote the estimated rA and rSp in the real data. Dashed horizontal

bars denote the 95% CI for rA evaluated on all phylogenetic pairs. A black and a magenta inclined line denote the least

squares linear regression of rA and rSp on the mean phylogenetic distance, d̄ij , in each decile. Brown and green points with

error bars denote the estimated values of rA obtained after replacing the real trait values on the tree by values simulated

under the maximum likelihood fit of the PMM and the POUMM methods respectively (mean and 95% CI estimated from
100 replications). A brown and a green line show the expected correlation between pairs of tips at distance dij , as modeled

under the ML-fit of the PMM and the POUMM (eq. 2 and 3). A light-brown and a light-green region depict the 95% high
posterior density (HPD) intervals inferred from Bayesian fit of the two models (”Materials and methods”).
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FIG. S2. Bias in the PMM estimate for the correlation in phylogenetic pairs A: A scatter plot and OLS regression

of dij on tij (slope -0.34 (p<0.01), R2
adj=0.24). Points in magenta denote CPPs (dij<10−4); B: covariance modeled as

a function of tij . Black points and error-bars denote the sample covariance and 95% CI upon a stratification in deciles of

tij . Brown and green points and error-bars denote the mean and 95% CI upon replacing the lg(spVL)-values with values

simulated under the ML fit of the PMM and the POUMM (100 replications). A black line going through the origin denotes
the OLS regression with 0 intercept to the real data. A brown and a green line with brighter surrounding regions denote
the covariance and its 95% HPDs under the PMM and the POUMM respectively. The latter have been obtained from the
expressions for the nominator in eqs. 2 and 3 using the ML estimates and posterior samples for the model parameters. In
the case of the POUMM, the phylogenetic distance dij has been replaced by the linear regression of dij on tij from the

phylogenetic pairs (panel A). The slope of the brown line equals the parameter σ2 of the PMM. Notice the negative bias
with respect to the OLS fit (black line). C: variance of the trait values at the tips of the UK tree modeled as a function
of the root-tip distance, t. Black points and error-bars denote the sample variance and its 95% CI in the real data, upon a
stratification in deciles. Brown and green points and error-bars denote the mean and 95% CI upon replacing the lg(spVL)-
values with values simulated under the ML fit of the PMM and the POUMM (100 replications). A black line denotes the
OLS regression of the variance in the real data on t. A brown and a green line with brighter surrounding regions denote
the variance and its 95% HPDs under the PMM and the POUMM respectively. The latter have been obtained from the
expressions for the denominator in eqs. 2 and 3 using the ML estimates and posterior samples. As in panel B, the slope of

the brown line equals the parameter σ2 of the PMM. The distances tij and dij are measured in substitutions per site (sps).
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FIG. S3. Mean phylogenetic distance dij between PPs in the toy-model simulations
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FIG. S4. Estimating the genotypic variance in toy-model simulations. s2(G): true genotypic variance calculated

from grouping by identical genotype; s2(G0): true genotypic variance calculated from grouping by identical genotype in the
sample of known donor-recipients, taking their genotype and trait values at the moment of transmission; s(zdon,0,zrcp,0):

empirical covariance between donors and recipients at the moment of transmission; s2(Grcp,0): true genotypic variance in

recipients at the moment of getting infected; s(zdon,zrcp): donor-recipient covariance at moment of diagnosis (including

measurement delay); VarBM (t̄;σ): estimated PMM genotypic variance at t̄ according to eq. 16; VarBMe: estimated PMM

genotypic variance based on the difference s2(z)−σ̂2e in the ML fit of the PMM; s2(zBMsim)−σ̂2e : estimated PMM genotypic
variance based on the difference of the mean trait variance in 100 simulations of the ML PMM fit on the tree and the ML
value of the parameter σ2e ; VarOU (t̄;α,σ): estimated POUMM genotypic variance at t̄ according to eq. 17; VarOUe: estimated

POUMM genotypic variance based on the difference s2(z)−σ̂2e in the ML fit of the POUMM; s2(zOUsim)−σ̂2e : estimated
POUMM genotypic variance based on the difference of the mean trait variance in 100 simulations of the ML POUMM fit

on the tree and the ML value of the parameter σ2e .
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FIG. S5. Phenotypic variance in the toy-model simulations. s2(z): sample variance of the trait value in the entire

sampled population; s2(z0): sample variance in the sampled donor-recipient couples taking the trait values at moment

of infection; s2(zdon,0): sample variance in the donors from donor-recipient couples, taking the trait values at moment

of infection; s2(zrcp,0): sample variance in the recipients from donor-recipient couples, taking the trait values at moment

of infection; s2(zdon): sample variance in the donors from donor-recipient couples, taking the trait values at moment

of diagnosis; s2(zrcp): sample variance in the recipients from donor-recipient couples, taking the trait values at moment

of diagnosis; VarBM (t̄;σ,σe)=σ2t̄+σ2e : expected phenotypic variance under the ML fit of the PMM at the mean root-tip

distance t̄; s2(zBMsim): mean sample trait variance from 100 simulations of the ML PMM fit on the tree; VarOU (t̄;α,σ,σe)=

σ2

2α (1−exp(−2αt)+σ2e : expected phenotypic variance under the ML fit of the POUMM at the mean root-tip distance t̄;

s2(zOUsim): mean sample trait variance from 100 simulations of the ML POUMM fit on the tree.
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FIG. S6. Details of the PMM and POUMM ML fits to the toy-model simulations. A: comparison beween the
true population mean (wide boxes in the background) to the mean-value expected under the PMM method (brown) and
the long-term mean value, θ expected under the POUMM method (green); B: Estimates for the parameter α in the toy-
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FIG. S7. Correlation in phylogenetic pairs and donor-recipient couples in toy-model simulations. Each panel
displays the correlation as a function of dij in a randomly chosen epidemic for a given scenario and mean contact interval,

1/κ. In each simulated epidemic, we consider the population of the first 10,000 diagnozed individuals. In this population,

the exact transmission tree and transmission couples are known. A black horizontal line represents the true value of H2

measured by the direct estimator R2
adj . Dots and vertical bars display point-estimates and 95% CIs of rA in the PPs and

of b in the donor-recipient couples upon a stratification into quintiles of dij . Black: rA in PPs; brown: rA in PPs after

replacing the trait-values simulated under the toy-model with values simulated under the ML fit of the PMM; green: rA in
PPs after replacing the trait-values simulated under the toy-model with values simulated under the ML fit of the POUMM;
cadet-blue: b in donor-recipient’s; grey (only for dij=0): b0 in donor-recipient’s based on trait-values at moment of infection.

A brown and a green line indicate the correlation between tip-pairs in the tree expected under the ML fit of the PMM and
POUMM respectively.

20



i
i

i
i

i
i

i
i

SUPPLEMENTARY INFORMATION MBE

σe Ht
2 He

2

α θ σ

1e+06 2e+06 3e+06 4e+06 1e+06 2e+06 3e+06 4e+06 1e+06 2e+06 3e+06 4e+06

1e+06 2e+06 3e+06 4e+06 1e+06 2e+06 3e+06 4e+06 1e+06 2e+06 3e+06 4e+06
0

5

10

15

0.00
0.25
0.50
0.75
1.00

4.2

4.4

4.6

4.8

0.00
0.25
0.50
0.75
1.00

0

50

100

150

0.4

0.6

0.8

1.0

iteration

va
lu
e

chain
1

2

3

A

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

σe Ht
2 He

2

α θ σ

0.4 0.6 0.8 1.0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0 50 100 150 4.2 4.4 4.6 4.8 0 5 10 15
0.0

0.2

0.4

0.6

0.0
2.5
5.0
7.5
10.0

0
5
10
15
20

0.0
2.5
5.0
7.5
10.0

0.00
0.01
0.02
0.03
0.04
0.05

0
5
10
15
20

value

de
ns
ity

chain
1

2

3

B

FIG. S8. Trace-plots and posterior densities from the POUMM MCMC-fits to HIV from the UK cohort (8483
patients). Three MCMC chains have been executed: 1 - sampling from the prior distribution; 2 and 3 - sampling from the
posterior distribution. (A) Trace-plots - the randomness and the lack of time-correlation in the traces show the correct mixing
of the MCMC chain; (B) Inferred posterior densities. The clear distinction between prior and posterior densities proves the
presence of informative signal in the data. The match between the densities from chain 2 and 3 proves the convergence of
the MCMCs towards the posterior distribution. This convergence was also validated through the Gelman-Rubin statistic
being nearly equal to 1 (results not shown).
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FIG. S9. Expected couples of donor-recipient trait values at dij/2 past transmission Red circles denote donors,

blue circles denote recipients. Red vertical arrows denote transmission. Black left-to-right arrows denote mutation during
the time from transmission to measurement in the donors and the recipients. The weights above the arrows denote the
probability of the transmission or mutation happening. The diagram can be read in the following way (example): at the
moment of a generation, a type 00 infected host transmits its pathogen to a susceptible individual of host-type 0 with
probability f·0. After the transmission event the strain in each of the two hosts has a chance ν to be substituted by a
mutant strain. Thus, the probability of having a donor recipient couple, in which both hosts have a state 00 at the moment
of measurement, given that the donor was type 00 at the moment of transmission, is equal to the product νf·0ν. It remains
to multiply this by the frequency of encountering a type 00 donor, to obtain the overall probability of the event.
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Abstract

Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce
different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as
“per-parasite pathogenicity”. Using viral load and CD4þ T-cell measures from 2014 HIV-1 subtype B-infected
individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence—measured as the rate of decline
of CD4þ T cells—and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by
donor–recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed
models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4þ T-cell declines and per-
parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from
zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4þ T-cell decline
is 17% (5–30%), and that of the per-parasite pathogenicity is 17% (4–29%). Further, we confirm that the set-point
viral load is heritable, and estimate a heritability of 29% (12–46%). Interestingly, the pattern of evolution of all these
traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral
load, and with directional selection for the CD4þ T-cell decline and the per-parasite pathogenicity. Our analysis
shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the
indirect effect via the set-point viral load is minor.

Key words: evolution of virulence, disease tolerance, per-parasite pathogenicity, heritability, HIV.

A
rticle

� The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access

Mol. Biol. Evol. 35(1):27–3 doi:10.1093/molbev/msx246 Advance Access publication October 3, 2017 27



Introduction
The virulence of an infection is determined by both, the host
and the pathogen. One of the most common modulators of
virulence is the pathogen load. Higher load often leads to
more morbidity, or to faster disease progression or death.
Similar to virulence, the load that a pathogen strain attains
is also determined by both, the host and the pathogen. In
evolutionary ecology, hosts that limit virulence by reducing
pathogen load are called “resistant”, and pathogen strains
that attain a high load in their hosts are often termed
“virulent”.

But virulence is not completely determined by the
pathogen’s load alone. There are pathogen-load-
independent components, which are again influenced by
the host and the pathogen. A host that suffers less than av-
erage from being infected by a pathogen and carrying a spe-
cific load is called “tolerant” (Caldwell et al. 1958; Schafer 1971;
Råberg et al. 2007, 2009; Boots 2008; Boots et al. 2009; Read
et al. 2008; Schneider and Ayres 2008; Little et al. 2010; Ayres
and Schneider 2012; Medzhitov et al. 2012; Råberg 2014). A
pathogen strain that causes less than average virulence attain-
ing a specific load is said to have a low “per-parasite patho-
genicity” (Råberg and Stjernman 2012; Råberg 2014). Figure
1A displays these virulence components diagrammatically.

How can pathogen-load-independent components of vir-
ulence be determined? To identify these components, “excess
virulence” needs to be measured, that is by how much viru-
lence differs from what is expected for a specific pathogen
load. Statistically speaking, “excess virulence” is the residual
virulence after adjusting for differences in pathogen load. This
adjustment can be visualized on fitness-versus-pathogen-load
plots (fig. 1B). On such a plot, host types with differing levels
of disease tolerance are characterized by different tolerance
curves that depict the relationship between virulence and
pathogen load (see fig. 1B bottom left). The steepness of
this curve is inversely related to disease tolerance.

Once tolerance curves for different host types are deter-
mined, the per-parasite pathogenicity will manifest itself as a
yet unexplained deviation from the tolerance curve. In other
words, varying degrees of per-parasite pathogenicity will lead
to residual excess virulence that is not explained by host
factors. Figure 1C shows how two pathogen strains differing
in their per-parasite pathogenicity will scatter around the
tolerance curves of two host types.

HIV infection provides an ideal example to illustrate this
decomposition of virulence. In this infection, CD4þ T cells—
the target cells of the virus—continuously decline from a level
of �1,000 cells per microliter blood. A CD4þ T-cell count
below 200 cells per microliter blood is one of the defining
characteristics of AIDS. The decline rate of the CD4þ T cells is
a well-established surrogate for the rate of disease progression
(Phillips et al. 1991), that is virulence. It has the advantage that
it can be determined from clinical samples spanning less than
one year of monitoring an HIV infected individual, whereas
the direct observation of disease progression requires many
years. The existence of such a well-established, quantitative
measure of virulence makes HIV infection unique.

The decomposition of virulence relies on its relation with
pathogen load. During HIV infection, the viral load rises and
peaks a few weeks after infection, and subsequently settles at
a fairly stable level that is maintained for many years—the so-
called set-point viral load. This set-point viral load represents
a good measure of pathogen load required for the decompo-
sition of virulence, and it is associated with the rate of pro-
gression toward disease and death (Mellors et al. 1996).
However, the correlation between the set-point viral load
and the decline of the CD4þ T cells—a good proxy of the
rate of disease progression—is not very strong: R2 values were
found to be between 0.05 and 0.08 in American cohorts
(Rodriguez et al. 2006), and 0.05 for the population studied
here (Regoes et al. 2014) (although the correlation between
set-point viral load and survival time has been reported to be
higher, Arnaout et al. 1999). While this weak correlation may
be in part the result of measurement error it suggests that
there are factors influencing virulence other than the set-
point viral load.

In the context of HIV infection, examples for variation in all
of the four virulence components exist. First, the set-point
viral load differs by three orders of magnitude between HIV
infected individuals, ranging from 103 to 106 RNA copies per
ml plasma (Mellors et al. 1996; Raboud et al. 1996; Deeks et al.
1997). This variation is associated with the rate of disease
progression (Mellors et al. 1996). Recent heritability studies
(as reviewed in Fraser et al. 2014) have shown that a fraction
of the variation in the set-point viral load can be attributed to
the viral genotype infecting the host.

Second, human genes conferring “host resistance” in the
sense of evolutionary ecology (see above) have been identi-
fied: Individuals who carry protective HLA-B alleles have lower
set-point viral loads, and progress to disease at a slower rate
than people without these alleles (Goulder and Watkins 2008;
Fellay et al. 2007). Across primates, species-specific restriction
factors can limit the load of Human and Simian
Immunodeficiency Viruses (SIVs; Kirchhoff 2009; Zheng
et al. 2012).

Third, in the context of immunodeficiency viruses, there
are examples for variation in pathogen-load-independent vir-
ulence components. SIV infection in natural hosts, such as the
sooty mangabeys, is avirulent despite the high set-point viral
loads SIV attains in these hosts (Chakrabarti 2004; Chahroudi
et al. 2012). In contrast, SIV infection in nonnatural hosts,
such as the rhesus macaque, leads to an AIDS-like disease
(Chakrabarti 2004; Chahroudi et al. 2012). Thus, natural hosts
tolerate the infection without becoming sick. There is also
variation in tolerance to HIV infection in humans associated
with age and human leukocyte antigens (HLA; Regoes et al.
2014).

Lastly, there is also variation in per-parasite pathogenicity
across viral strains. For example, there is evidence that HIV-1
subtype D leads to faster disease progression than subtype A
even though both subtypes attain similar set-point viral loads
(Baeten et al. 2007). In other words, subtype A and D differ in
their per-parasite pathogenicity.

Previously, we investigated if humans display variation in
disease tolerance against HIV (Regoes et al. 2014). We found
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that younger individuals and HLA-B heterozygotes are more
tolerant, and could link the variation in tolerance to HLA-B
genotype. In this previous study, we did, however, not inves-
tigate the potential impact of the virus genotype on virulence.

How can one investigate if the virus genotype influences a
host–pathogen trait? One way is to study associations be-
tween genetic polymorphisms of the virus and the trait, as is
done, for example, in genome-wide association studies
(Bartha et al. 2013). An alternative approach is to estimate
the heritability of the trait. If a trait is heritable, that is similar
between similar viral genotypes, it must, at least in part, be
determined by viral genes.

The influence of the virus genotype on the set-point viral
load has been the focus of many research groups, including
ours, over the past years. Most studies determined the heri-
tability of the set-point viral load (Alizon et al. 2010;
Hollingsworth et al. 2010; Müller et al. 2011; Hodcroft et al.
2014; Fraser et al. 2014), while others investigated associations

between genetic polymorphisms of the virus and the trait
(Bartha et al. 2013). There is a consensus that set-point viral
load is heritable, although there is some controversy on the
numerical value of the heritability.

In this study, we investigate the influence of the HIV
genotype on overall virulence, as measured by the CD4þ
T-cell decline, and its pathogen-load-dependent and -in-
dependent components, the set-point viral load and per-
parasite pathogenicity, respectively. We determine the
influence of the viral genotype by estimating the
“heritability” of these traits, measuring how similar the
trait values are in the donor and in the recipient. To
this end, we use data from the Swiss HIV Cohort Study.
For our analysis, we selected cohort participants, for
whom we could determine the set-point viral load and
the decline of CD4þ T lymphocytes—an established
proxy for virulence in HIV infection. As a surrogate for
the per-parasite pathogenicity we use the residuals from

FIG. 1. Dissecting virulence. (A) Systematics of virulence components. Each component can be a trait of either the pathogen or the host, and
depend or be independent of the load of the pathogen. (B) Formally, virulence can be dissected using fitness-versus-pathogen-load plots. (In these
plots, host fitness is inversely correlated with virulence.) Adapted from figure 1 in Råberg (2014). (C) In multi-host multi-pathogen systems,
virulence components can be disentangled by first defining host-type-specific tolerance curves. Pathogens differing in their per-parasite path-
ogenicity will then fall on different sides of these tolerance curves. In the example shown, pathogen B has a higher per-parasite pathogenicity than
pathogen A.
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previously determined tolerance curves (Regoes et al.
2014) as described in Materials and Methods.

Our analysis confirms that set-point viral load is heritable.
We further provide evidence the virulence of HIV infection, as
measured by the decline of CD4þ T lymphocytes, is heritable.
Lastly, we find evidence for the heritability of the per-parasite
pathogenicity, the pathogen-load-independent component
of virulence. Our results are therefore consistent with the
notion that the virus genotype affects virulence in HIV infec-
tion both via the viral load, and via viral-load-independent
mechanisms.

Results

Heritability of Set-Point Viral Load Confirmed
The heritability of the set-point viral load has previously been
estimated from data of the Swiss HIV cohort study (Alizon
et al. 2010) and from data of other cohorts (Hollingsworth
et al. 2010; Müller et al. 2011; Hodcroft et al. 2014). The
methods differed across these studies.

To test the conclusion of these studies, we applied donor–
recipient regressions and the phylogenetic mixed models to
the set-point viral loads from the 2014 individuals we in-
cluded in the present study. The donor–recipient regressions
were applied to 196 previously determined transmission pairs
(Kouyos et al. 2014), whereas the phylogenetic methods were
applied to a phylogenetic tree that was constructed from pol
gene sequences (see Materials and Methods). Since set-point
viral loads were significantly associated with sex, age at infec-
tion, and were higher in men who have sex with men, we also
estimated the heritability of adjusted set-point viral loads as
defined in Materials and Methods.

Across all the methods we use, the estimates for heritabil-
ity range from 8% to 29% (see table 1, fig. 2B and supplemen-
tary fig. S2B, Supplementary Material online). These estimates
are all significantly larger than zero, except for the adjusted
set-point viral load using the phylogenetic mixed-model that
assumes neutral evolution. These results add to the growing
consensus that set-point viral load is heritable.

Interestingly, assuming stabilizing selection on the set-
point viral load in our phylogenetic analysis led to a signifi-
cantly better fit to the data than assuming neutral drift
(Likelihood ratio test: P¼ 1.2� 10–4 for unadjusted and
P¼ 8.8� 10–6 for adjusted set-point viral loads). Thus, the
estimates for the heritability of the set-point viral load with
the best statistical support are 26% and 29% without and
with adjustment for cofactors, respectively. Both of these
estimates are significantly different from zero.

The optimal trait value h of the Ornstein–Uhlenbeck pro-
cess is estimated to be 104.0 RNA copies per milliliter plasma
for the unadjusted set-point viral load (95% CI: 101.6–104.3

RNA copies per milliliter plasma), very close to the mean of
the set-point viral load in our study population of 104.2 RNA
copies per milliliter plasma (see table 2). The parameter mea-
suring the strength of selection, a is high: 32.7 (95% CI: 0.03–
57.6) and 39.4 (95% CI: 6.1–68.1) for unadjusted and adjusted
set-point viral load, respectively (see table 2). These parameter
estimates are consistent with strong stabilizing selection
around the current mean trait value.

Evidence for the Heritability of CD4þ T-Cell Decline
The set-point viral load is an important determinant of CD4þ
T-cell decline, and it is heritable. We therefore expect the
CD4þ T-cell decline to be also heritable “by association”.

Table 1. Heritability Estimates for Set-Point Viral Load (spVL), CD4þ
T-Cell Decline (DCD4), and Per-Parasite Pathogenicity (ppp) Based
on the Phylogenetic Mixed Models Assuming Brownian Motion-type
Trait Evolution (PMM) or Trait Evolution According to the Ornstein–
Uhlenbeck Process (POUMM).

PMM POUMM

DCD4 (unadjusted) 25% (9%–40%) 17% (6%–29%)
DCD4 (adjusted) 24% (7%–39%) 17% (5%–30%)
spVL (unadjusted) 12% (2%–28%) 26% (8%–43%)
spVL (adjusted) 8% (0%–26%) 29% (12%–46%)
ppp 22% (5%–39%) 17% (4%–29%)

NOTE.—95% confidence intervals are given in brackets.

FIG. 2. Heritability estimates from donor–recipient regressions. For these regressions we plotted the trait values for each partner (“partner 1” and
“partner 2”) in the transmission pairs onto the x- and y-axes. Since we do not know the direction of the transmission in the pairs, the assignment of
the partners to either x- or y-axis is random. (See also supplementary fig. S2, Supplementary Material online.)
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So far, however, there has been no evidence for the heritability
of the CD4þ T-cell decline or HIV virulence.

To assess the heritability of the CD4þ T-cell decline, we
applied the same methods as for the set-point viral load.
Because the CD4þ T-cell decline was associated significantly
only with the age at infection we also conducted the analyses
with age-adjusted CD4þ T-cell declines as defined in
Materials and Methods.

The donor–recipient regression (fig. 2A) results in a heri-
tability estimate, which is not significantly different from zero
for both unadjusted and age-adjusted CD4þ T-cell declines.
This is likely the result of the low number of individuals in the
transmission pairs (2� 196), which limits the statistical power
of the donor–recipient regressions.

Using the phylogenetic mixed models, however, we can
incorporate all 2014 individuals of our study population, and
obtain heritability estimates significantly larger than zero.
Assuming neutral trait evolution (PMM) yields 25% and
24% for unadjusted and adjusted CD4þ T-cell declines, re-
spectively. With trait evolution according to the Ornstein–
Uhlenbeck process we get 17% irrespective of any adjustment
(see table 1).

Again, assuming trait evolution according to an Ornstein–
Uhlenbeck process has more statistical support than
Brownian motion trait evolution (Likelihood ratio test:
P¼ 6.9� 10–8 for unadjusted and P¼ 2.6� 10–5 for adjusted
CD4þ T-cell declines). But, unlike for the set-point viral load,
the estimate of the optimal trait value h (-1.15 per day, 95%
CI: -2.43 to -0.29 per day) is significantly below the mean of
the CD4þ T-cell declines in our study population (-0.20 per
day), and the estimated strength of selection a is an order of
magnitude lower than that for the set-point viral load (4.1
and 3.8 for unadjusted and adjusted CD4þ T-cell decline,
respectively). See table 2 for all selection related parameter
estimates for this trait. These parameters characterize direc-
tional, rather than stabilizing selection, consistent with a slow
time trend towards higher virulence.

Evidence for the Heritability of the Per-Parasite
Pathogenicity
Lastly, we investigated if there is any evidence for the herita-
bility of the per-parasite pathogenicity. The per-parasite

pathogenicity is the component of virulence, which is deter-
mined by the pathogen genotype and independent of the
pathogen load. Formally, we determine per-parasite pathoge-
nicity by calculating the residual of the regression of the
CD4þ T-cell decline against the set-point viral load adjusted
for the age of the infected individual (see Materials and
Methods and fig. 3).

A donor–recipient regression (fig. 2C) yields an estimate,
which is not significantly different from zero, again likely due
to the low number of transmission pairs. Using phylogenetic
mixed models, we estimate a statistically significant heritabil-
ity of 22% assuming Brownian motion-type trait evolution,
and 17% for trait evolution according to the Ornstein–
Uhlenbeck process (see table 1).

As for the set-point viral load and the CD4þ T-cell decline,
assuming trait evolution governed by an Ornstein–
Uhlenbeck process led to a significantly better fit than evo-
lution according to Brownian motion (Likelihood ratio test:
P¼ 2.2� 10–6). The pattern of selection most consistent
with the evolution of per-parasite pathogenicity is directional
selection as for the CD4þ T-cell decline: the optimal trait
value is estimated to be significantly lower than the popula-
tion mean, and the strength of selection is weak (see table 2).
This suggests that there is a slow time trend of increasing per-
parasite pathogenicity.

Testing for Genetic Associations with Per-Parasite
Pathogenicity
It is known that HIV-1 subtype D has a higher per-parasite
pathogenicity than subtype A. These intersubtype difference
in disease progression have been mapped to the pol gene and
were associated with replicative capacity (Ng et al. 2014). In
particular, a valine instead of an isoleucine at position 62 and
64 in the protease (I62V and I64V), and a proline instead of an

Table 2. Estimates of the POUMM Parameters Related to Selection
for Set-Point Viral Load (spVL), CD4þ T-Cell Decline (DCD4), and
Per-Parasite Pathogenicity (ppp).

a h Population
Mean

DCD4
(unadjusted)

4.1 (0.5–10.8) �1.15 (�2.43, �0.29) �0.20

DCD4
(adjusted)

3.8 (0.4–10.5) �0.93 (�2.30, �0.06) �0.04

spVL
(unadjusted)

32.7 (0.03–57.6) 4.0 (1.6, 4.3) 4.2

spVL
(adjusted)

39.4 (6.1–68.1) �0.03 (�0.17, 0.10) �0.04

ppp 3.9 (0.5–10.4) �0.89 (�2.17, �0.09) 0.00

NOTE.—95% confidence intervals are given in brackets. FIG. 3. As a surrogate for the per-parasite pathogenicity we use the
residuals from age-adjusted tolerance curves. In the graph, we plotted
each individual’s CD4þ T-cell decline versus his/her set-point viral
load. The red and blue curves show the average relationships between
these two measures in the groups that were 20 and 60-years-old at the
time of their infection, respectively. These age-adjusted tolerance
curves were determined previously (Regoes et al. 2014). The red
square and blue triangle highlight two individuals with an age at
infection of 20 and 60 years, respectively.
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alanine at position 272 in the reverse transcriptase were
found to be associated with high replicative capacity (Ng
et al. 2014).

We tested if these amino acid polymorphisms are associ-
ated with set-point viral load, CD4þ T-cell decline, and per-
parasite pathogenicity within HIV-1 subtype B. Indeed isoleu-
cine and valine at positions 62 and 64 of the protease, and
alanine and proline at position 272 in the reverse transcrip-
tase were the most prevalent amino acids in our study pop-
ulation. The set-point viral load was not associated with any
of these polymorphisms. Before adjustment for multiple com-
parisons, the association of proline at position 272 in the
reverse transcriptase with CD4þ T-cell decline and per-
parasite pathogenicity reach a significance level of P¼ 0.014
and P¼ 0.020, respectively, which is not significant after
adjusting the P-values for three comparisons.

Discussion
In this study, we confirmed the heritability of the set-point
viral load. Further, we report one of the first pieces of evidence
for the heritability of the CD4þ T-cell decline, a surrogate of
virulence. We also found support for the hypothesis that the
pathogen-load-independent virulence component is herita-
ble. Lastly, the evolution of these three traits is significantly
better described by the Ornstein–Uhlenbeck process than by
Brownian motion.

Our study confirms previous studies that established the
heritability of the set-point viral load in HIV infection (as
reviewed by Müller et al. 2011; Fraser et al. 2014). In particular,
our estimates are consistent with those from a donor–
recipient regression in Hollingsworth et al. (2010), and two
recent studies applying phylogenetic mixed models based on
the Ornstein–Uhlenbeck process by Mitov and Stadler (2016)
and Blanquart et al. (2017). Our analysis is also consistent with
the study by Hodcroft et al. (2014) that reported a low her-
itability of 5.7% of the set-point viral load adjusted for cova-
riates and assuming Brownian trait evolution. If we adjust for
covariates and assume Brownian trait evolution, we obtain a
heritability estimate of 8% that is not significantly different
from zero. Assuming trait evolution according to the
Ornstein–Uhlenbeck process, however, provides a signifi-
cantly better fit to the adjusted set-point viral load data
and yields a heritability estimate of 29%.

We find clear evidence for the heritability of the CD4þ T-
cell decline. As the level of CD4þ T cells is a defining char-
acteristic of clinical AIDS, the CD4þ T-cell decline is a good
surrogate of virulence of HIV infection. Although the poten-
tial heritability of the rate of decline of CD4þ T cells has been
investigated previously (Alizon et al. 2010), it was found to be
not significantly different from zero. We attribute this discrep-
ancy to the low sample size of the earlier study. In contrast to
the 2014 individuals in our study population, Alizon et al.
(2010) had enrolled only 1,100 and investigated the heritabil-
ity only in subpopulations consisting of a few hundred
individuals.

The recent study by Blanquart et al. (2017) also reports
heritability of the CD4þ T-cell decline. For the HIV-1 subtype

B, they estimate a heritability of 11% ranging from 0% to 19%.
This estimate is within the 95% confidence intervals of our
estimate, and our estimate of 17% is within the 95% confi-
dence intervals of their estimate. Unlike our analysis,
Blanquart et al. (2017) did not find support for the
Ornstein–Uhlenbeck over the Brownian motion trait evolu-
tion model. Their estimate of the strength of selection on the
CD4þ T-cell decline is 0.095 whereas we estimate 3.8. This
may be due to the lower sample size of 1,170 individuals in
the study by Blanquart et al. (2017). It may also be the result
of differences in the inclusion criteria: Blanquart et al. (2017)
included individuals with five CD4þ T-cell measures between
the time of their first positive HIV test and the beginning of
treatment, while we require only three CD4þ T cells but in a
more stringent time window that excludes the first 90 days
after the estimated time of infection and time points, after
the CD4þ T-cell count fell below 100 cells per microliter
blood. Differences in the tree reconstruction algorithm, how-
ever, are unlikely to explain the discrepancy. If we reconstruct
the phylogenetic tree with RaxML (Stamatakis 2006b), which
is closely related to ExaML (Kozlov et al. 2015) that Blanquart
et al. (2017) used, we obtain very similar parameter estimates
(see supplementary table S1, Supplementary Material online).
The heritability estimates based on the FastTree and RaxML
trees are most discrepant for the adjusted set-point viral load
when we use POUMM (29% vs. 34% or 38%), but, because of
the large confidence intervals, these estimates are not statis-
tically different. With the RaxML trees, we also find that
Ornstein–Uhlenbeck trait evolution has higher statistical
support.

We also provide evidence for the heritability of the per-
parasite pathogenicity. This trait describes the pathogenic
potential of a viral strain that is independent of the load
the strain attains in its host. We approximated this trait as
the deviation of the CD4þ T-cell decline observed in an in-
dividual from that predicted on the basis of the observed set-
point viral load and the age of the infected host (see Materials
and Methods). In addition to being determined by per-
parasite pathogenicity, this deviation could be affected by
further host factors, other sources of biological variation,
and, of course, measurement noise, and should therefore be
considered only as a surrogate for the per-parasite pathoge-
nicity of a strain. It is important to note, however, that the
uncertainties surrounding the quantification of the per-
parasite pathogenicity make it more difficult to establish
the heritability of this trait. The fact that we found evidence
for heritability means that the signal in our surrogate measure
of the per-parasite pathogenicity is not completely clouded
by factors, for which we could not account.

For all three traits we considered, the Ornstein–Uhlenbeck
trait evolution model has the best statistical support. For the
set-point viral load the strength of selection is estimated to be
high, and the inferred optimal value of the trait is close to the
mean of the set-point viral load in our study population.
Thus, set-point viral load is under significant stabilizing selec-
tion. The CD4þ T-cell decline and the per-parasite pathoge-
nicity, on the other hand, are not under strong stabilizing
selection but directional selection—a scenario that the
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Ornstein–Uhlenbeck trait evolution model can capture with
low selection strength a and an optimal trait value h signif-
icantly different from the population mean. The parameter
estimates of the Ornstein–Uhlenbeck model for these two
traits are consistent with a slow but significant increase in HIV
virulence over the past two decades (Pantazis et al. 2014). It is
well-recognized that the Ornstein–Uhlenbeck trait evolution
model can accommodate these two distinct patterns of selec-
tion. The difference in the nature of selection between set-point
viral load and the other two traits is also the reason behind the
bias in the heritability estimates based on Brownian motion trait
evolution: the heritability of the set-point viral load is under-
estimated, whereas those of the other two traits are slightly
overestimated. This conclusion is in agreement with simulation
studies of this bias (Mitov and Stadler 2017).

Intuitively, the heritability of the CD4þ T-cell decline
should be the combination of set-point viral load dependent
and independent components of this trait. The heritability
estimates we obtained conform surprisingly well with this
expectation. The estimate of the heritability of the CD4þ
T-cell decline with the highest statistical support is 17%.
The adjusted set-point viral load has a heritability of 29%.
To approximate to what extent the heritability of the set-
point viral load will trickle through to that of the CD4þ T-cell
decline, we need to factor in the correlation between these
two traits. In our study population, the fraction of the varia-
tion in the CD4þ T-cell decline explained by the set-point-
viral load is R2¼ 0.057, in very close agreement with estimates
of this quantity in other study populations (Rodriguez et al.
2006). Thus, �29%� 0.057¼ 1.6% of the 17.4% of the heri-
tability in the CD4þ T-cell decline are due to the set-point
viral load. The remainder—�16%—should be independent
of the set-point viral load. This agrees well with our estimate
of the heritability of the per-parasite pathogenicity of 17%,
especially given the uncertainty in all of these estimates.

The heritability of the per-parasite pathogenicity means
that there are viral genes that influence the CD4þ T-cell
decline in ways that do not depend on the viral load.
Generally, one conceivable such mechanism could be that
viral genotypes with high per-parasite pathogenicity elicit in-
effective immune responses that, rather than reducing viral
load, accelerate CD4þ T-cell decline. In terms of specific viral
factors influencing per-parasite pathogenicity, studies that
compare the disease course across HIV-1 subtypes are illumi-
nating. In particular, the coreceptor usage (Daar et al. 2007)
and pol replicative capacity (Barbour et al. 2004; Goetz et al.
2010; Ng et al. 2014) have been found to be associated with
the rate of disease progression independently of the set-point
viral load. Ng et al. (2014) identified three amino acid poly-
morphisms that are associated with replicative capacity. We
tested if these polymorphisms are associated with per-
parasite pathogenicity, CD4þ T-cell decline and set-point
viral load. While we could not establish any clear-cut associ-
ation after adjusting for multiple comparisons, a proline at
position 272 of the reverse transcriptase was the most prom-
ising candidate. The sample size for this test was lower
(n¼ 1222) than the size of our study population
(n¼ 2014) because the sequence region containing position

272 in the reverse transcriptase was not available in all indi-
viduals. This polymorphisms should be tested in the future for
an association with CD4þ T-cell decline and per-parasite
pathogenicity in a larger study population.

Previously, Pagel’s k was also employed to estimate the
heritability of the set-point viral load from a phylogenetic tree
of HIV pol sequences (Alizon et al. 2010). Leventhal and
Bonhoeffer (2016), however, have argued recently that
Pagel’s k implicitly assumes the trees to be ultrametric.
Thus, for nonultrametric phylogenetic trees, such as the
one we analyzed, this essential assumption of Pagel’s k is
violated, and this method should therefore not be used.
We nevertheless provide heritability estimates for comparison
in supplementary figure S1, Supplementary Material online.
With Pagel’s k the set-point viral load and the CD4þ T-cell
decline are also found to be significantly heritable.

The heritability of traits from donor to recipient is some-
times interpreted as the quantitative measure of the extent to
which the trait is “under the control of the virus”. It has been
pointed out that the viral genome carries an imprint of past
environments, in particular the immune responses experi-
enced in former hosts (Bartha et al. 2013, 2017; van Dorp
et al. 2014; Carlson et al. 2014 2016). Thus, separating virus
from host effects is challenging. What is undisputed is that
the trait in the new host is in part encoded in the viral ge-
nome. Information on associations with viral genes is very
valuable, especially for traits that cannot be determined in-
stantaneously, such as the CD4þ T-cell decline.

In summary, we presented a comprehensive evolutionary
analysis of the components of HIV virulence. We established
that viral load dependent and independent virulence com-
ponents, as well as overall virulence are heritable. This strongly
suggests that these virulence components are, at least in part,
encoded in the viral genome. Future research will need to
identify the specific genetic polymorphisms associated with
these virulence components.

Materials and Methods

Study Population
We analyzed a subset of the individuals from the Swiss HIV
Cohort Study (www.shcs.ch; last accessed September 24,
2017; Schoeni-Affolter et al. 2010). This study has enrolled
>19,000 HIV-infected individuals to date, which constitutes
>72% of all patients receiving antiretroviral therapy in
Switzerland, and is therefore highly representative. The viral
load and CD4þ T-cell count of each enrolled individual are
determined approximately every three months. In some of
these individuals, the pol gene of the virus was sequenced.
The pol gene encodes viral enzymes important for viral rep-
lication within its target cell, most notably the reverse tran-
scriptase, the integrase, and the protease, and contains many
of the clinically relevant resistance mutations.

The study population of the present study consists of a
subset of the study population analyzed in a previous study
(Regoes et al. 2014). In this previous study, we had included
3,036 HIV-1 infected individuals, for whom viral load meas-
urements and CD4þ T-cell counts were available to reliably
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estimate the set-point viral load and CD4þ T-cell decline. We
restricted our analysis to data obtained before antiretroviral
treatment. Furthermore, we excluded the primary and late
phases of the infection by discarding measurements during
the first 90 days after the estimated date of infection and
measurements obtained when the CD4þ T-cell count was
below 100 per microliter blood. Lastly, individuals were in-
cluded if they had at least two viral load measurements and
three CD4þ T-cell measurements that were at least 180 days
apart.

For the present study, we selected 2014 individuals of the
3,036 individuals enrolled previously. Individuals were in-
cluded if the pol gene of their virus had been sequenced.
The genetic information of the virus was necessary for the
present study to infer the evolutionary history and investigate
patterns of heritability.

Pol sequence information was obtained from the SHCS
genotypic drug resistance database. Sequences are stored in
a central database (SmartGene; Integrated Database Network
System version 3.6.13). All laboratories perform population-
based sequencing (von Wyl et al. 2007; Yang et al. 2015). The
drug resistance database includes, in addition to the routinely
collected samples, over 11,000 samples from the biobank an-
alyzed by systematic retrospective sequencing (Yang et al.
2015; Schoeni-Affolter et al. 2010). The individuals in our
study population belong to the following risk groups: men
having sex with men—972 (48%), heterosexuals—435
(21.5%), intravenous drug users—365 (18%), and others—
252 (12.5%).

The SHCS, enrolling HIV-infected adults aged over 16-
years-old, has been approved by ethics committees of all
participating institutions. The data collection was anonymous
and written informed consent was obtained from all partic-
ipants (Schoeni-Affolter et al. 2010).

Set-Point Viral Loads and CD4þ T-Cell Declines
For each individual enrolled in our study, the set-point viral
load had been determined in a previous study (Regoes et al.
2014) as the mean of the logarithm to the base 10 of the
eligible viral load measurements in each individual.
Nondetectable viral loads had been set to half the detection
limit. The rate at which the CD4þ T cells change per day had
previously been estimated as the slope in a linear regression of
CD4þ T-cell counts in an individual against the date, at which
they were determined. The rate of change in CD4þ T cells is
inversely related to virulence.

Set-point viral loads and CD4þ T-cell declines were ad-
justed for potential covariates by regressing them against sex,
age at infection, risk group and ethnicity. Once significant
covariates were identified, adjusted traits were defined as
the residuals of a regression with these covariates.
Subsequent analyses were then conducted with the residuals.

The inclusion criteria, calculation of set-point viral load
and CD4þ T-cell decline, as well as the model fitting and
comparisons had been implemented and performed in the R
language of statistical computing (R Core Team 2013).

Per-Parasite Pathogenicity
Per-parasite pathogenicity is defined as the pathogenic po-
tential of a pathogen strain adjusted for its load and host
factors that are associated with pathogen-load independent
virulence components.

To derive a proxy for the per-parasite pathogenicity of a
strain, we first determined the relationship between pathogen
load and pathogenicity—called the tolerance curve—for a given
host type. In our previous study (Regoes et al. 2014), we found
that the age, at which the host was infected, was associated very
strongly with the slope of the tolerance curve. Therefore, we
determined the tolerance curve specific for the age of the host
that harbors the pathogen strain. We did not account for host
factors other than age, such as, for example, HLA-B genotype or
homozygosity, because this information of host genotype is
lacking for the majority of our study population.

In a next step, we predicted the CD4þ T-cell decline we
should observe given the set-point viral load that this strain
attains in the host. Lastly, we calculated by how much the
observed CD4þ T-cell decline deviates from this prediction
(see fig. 3).

In our conceptualization, tolerance is measured by the
parameter characterizing the relationship between the
CD4þ T-cell decline and the set-point viral load. Different
levels of per-parasite pathogenicity, on the other hand, man-
ifest themselves as a deviation of an individual’s CD4þ T-cell
decline and set-point viral load from the tolerance curve.
Formally, this procedure amounts to regressing CD4þ T-
cell decline against the set-point viral load, adjusting for the
age at infection, and calculating the residual of an individual’s
trait from the regression line. We denote this proxy as ppp.
Lower and more negative values of this quantity are associ-
ated with faster disease progression.

Transmission Pairs and Phylogenetic Tree
The transmission pairs were identified as monophyletic clus-
ters on a previous HIV transmission tree (Kouyos et al. 2014).
Of these previously established transmission pairs, 196 were
present in our study population. The direction of transmis-
sion cannot be inferred in these pairs.

The reconstruction of the phylogenetic tree relies on pol
gene sequencing of the virus carried by the study subjects. In
particular, we had sequences of pol extending over the HXB2
positions 2253–3870, comprising the protease and the reverse
transcriptase. All sequences were initially aligned to an HXB2
reference genome (http://www.ncbi.nlm.nih.gov/nuccore/
K03455.1; last accessed September 24, 2017) using MUSCLE
(Edgar 2004). We selected the earliest sequence if more than
one sequence was available for a person.

To reconstruct the evolutionary history, we first removed
insertions relatively to HXB2. To exclude signatures of parallel
evolution due to drug pressure that can distort the inferred
evolutionary history, we further removed drug resistance
mutations according to the databases of Stanford (http://
hivdb.stanford.edu/; last accessed September 24, 2017) and
the International Antiviral Society (https://www.iasusa.org/;
last accessed September 24, 2017). We used Gblocks to refine
the alignment. The final number of positions was 1106.
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We constructed the phylogenetic tree using FastTree
(Version 2.1.8 SSE3, OpenMP; Price et al. 2010). We used a
maximum-likelihood-based inference using a Generalized
Time-Reversible evolutionary model and a CAT model
(Stamatakis 2006a) with 20 discrete evolutionary rate catego-
ries. We use the most rigorous and time-consuming FastTree
parameters (FastTreeMP -pseudo -spr 4 -mlacc 2 -slownni -
gtr -nt). We rooted the tree with 10 Subtype C sequences as
an outgroup, using the R package APE. The branch lengths in
our tree correspond to genetic distances between the sequen-
ces, and not to time.

We also compared the results obtained from this tree with
those of two trees reconstructed with RaxML (Stamatakis
2006b). These trees were reconstructed assuming a
Generalized Time-Reversible evolutionary model. One as-
sumed CAT model with 25 discrete evolutionary rate cate-
gories, the other C-distributed evolutionary rates.
Supplementary table S1, Supplementary Material online,
shows that there is generally good agreement between the
results.

Heritability Estimation
To estimate the heritability of the three traits—set-point viral
load, CD4þ T-cell decline and per-parasite pathogenicity—
we used two approaches.

First, we applied donor–recipient regressions that are for-
mally equivalent to parent-offspring regressions (Fraser et al.
2014) to the 196 previously identified transmission pairs.
Although we do not have any information on the direction
of transmission in these pairs, we expect that a regression
between the trait in question will yield a good estimate of the
heritability (Bachmann et al. 2017).

Second, we employed phylogenetic mixed models
(Housworth et al. 2004) that are widely used to estimate
the heritability from a phylogenetic tree. These methods
have the advantage of being able to incorporate larger study
populations and transmission relationships ranging from
close pairing to distant epidemiological linkage. We used
the recent implementation by Leventhal and Bonhoeffer
(2016) in the R language of statistical computing (R Core
Team 2013). The models that underlie this method assume
trait evolution according to Brownian motion, meaning that
traits drift neutrally. Brownian motion is characterized by the
diffusion constant which is related to the heritability. Because
we use the method on a tree, the branch lengths of which
correspond to genetic distances, we make the implicit as-
sumption that heritability increases linearly with genetic dis-
tance. Previous studies used Pagel’s k to estimate heritabilities
(Alizon et al. 2010; Shirreff et al. 2013). We refrained from
using Pagels k in our main analysis because it is not as ap-
propriate as phylogenetic mixed model for nonultrametric
trees (as our phylogenetic tree; Leventhal and Bonhoeffer
2016). However, as a point of comparison with estimates of
Pagels k in previous studies, we report our estimates of this
quantity in the supplementary material, Supplementary
Material online.

We also applied phylogenetic mixed models based on the
Ornstein–Uhlenbeck process that describe stabilizing trait

selection around an optimal trait value rather than neutral
drift. In addition to the diffusion constant, this model has a
parameter for the trait value around which selection stabilizes
the trait, h, and another parameter describing the strength of
selection, a. In macroevolutionary applications, the parameter
a is often translated into a characteristic time t1=2¼ ln(2)=a
needed for the trait to evolve halfway back to its optimum
(Hansen 1997). The heritability in POUMM is related to all
three parameters of the Ornstein–Uhlenbeck process (Mitov
and Stadler 2016). We used the implementation by Mitov
and Stadler (2017).

Testing for Genetic Associations with Per-Parasite
Pathogenicity
Previous studies identified a valine instead of an isoleucine at
position 62 and 64 in the protease (I62V and I64V), and a
proline instead of an alanine at position 272 in the reverse
transcriptase as amino acid substitutions that could be asso-
ciated with per-parasite pathogenicity (Ng et al. 2014) (see
the Result section for more details). To test for associations of
per-parasite pathogenicity with the substitutions I62V, I64V,
and A272P, we regressed per-parasite pathogenicty, but also
the other two traits, set-point viral load and CD4þ T cells
decline, against categorical variables indicating the presence
of the mutated amino acid at the respective position. The
mutated amino acids were defined as a valine in position 62
and 64 of the protease, and a proline in position 272 of the
reverse transcriptase. In these regressions, we also included
cofactors such as age, sex and risk group.

An association with per-parasite pathogenicity was
assessed in two ways. First, we regressed the proxy for per-
parasite pathogenicity defined above—residuals from the
age-adjusted tolerance curves—against the presence of the
substitute amino acid. Second, we regressed the rate of
change in the CD4þ T cells against the square of the loga-
rithm to the base of 10 of the set-point viral load, including
the presence of the mutated amino acid at the respective
position as an interaction term. We also included the sex and
age at infection as cofactors in the analysis:

DCD4 ¼ða0 þ g62PROT:V þ g64PROT:V

þ g272RT:P þ gM þ c aÞðlog10VÞ2 þ �
(1)

Here, DCD4 denotes the rate of change in the CD4þ T-cell
level per microliter blood per day. The parameter a0 describes
the relationship between set-point viral load and CD4þ T
cells decline for females with age zero that are infected with a
virus that does not express any of the mutant amino acids
we consider. The remaining parameters describe the offset
that can be attributed to the various cofactors:
g62PROT:V; g64PROT:V , and g272RT:P describe the potential
change in the relationship between set-point viral load and
CD4þ T-cell decline due to each considered amino acid sub-
stitution, and gM quantifies the change due to being male. ca
is the offset to a0 in an individual of age a. This procedure
follows the approach we have adopted previously to test for
the association of host factors with disease tolerance (Regoes
et al. 2014).
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Table S1: Comparison of the heritability estimates using different tree reconstruction algorithms. For
all traits, POUMM fits the data significantly better than PMM.

Method Tree reconstruction ∆CD4 (unadjusted) ∆CD4 (adjusted) spVL (unadjusted) spVL (adjusted) ppp
PMM (ML) FastTree 25% (9%–40%) 24% (7%–39%) 12% (2%–28%) 8% (0%–26%) 22% (5%–39%)

RaxML-CAT 24% (9%–39%) 0% (0%–10%) 13% (3%–29%) 0% (0%–12%) 23% (7%–39%)
RaxML-Gamma 24% (9%–39%) 0% (0%–3%) 13% (3%–29%) 11% (2%–25%) 23% (6%–39%)

PMM (MCMC) FastTree 24% (12%–36%) 23% (9%–36%) 13% (4%–23%) 9% (0%–19%) 21% (9%–32%)
RaxML-CAT 24% (13%–34%) 25% (14%–34%) 14% (5%–24%) 9% (0%–20%) 24% (13%–35%)
RaxML-Gamma 24% (13%–35%) 24% (14%–36%) 14% (5%–25%) 11% (1%–22%) 22% (6%–33%)

POUMM FastTree 17% (6%–29%) 17% (5%–30%) 26% (8%–43%) 29% (12%–46%) 17% (4%–29%)
RaxML-CAT 20% (8%–30%) 21% (9%–32%) 33% (19%–48%) 38% (22%–52%) 19% (7%–31%)
RaxML-Gamma 19% (8%–30%) 20% (8%–33%) 30% (15%–46%) 34% (18%–50%) 19% (6%–31%)
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Figure S2: Heritability estimates from donor-recipient regressions on adjusted CD4+ T cell decline
and set-point viral loads. For the definition of the adjusted trait values see the Methods and Materials.
(See also Fig 3.)
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PA R A L L E L L I K E L I H O O D C A L C U L AT I O N F O R G A U S S I A N
P H Y L O G E N E T I C M O D E L S

In major revision for a publication as

Venelin Mitov and Tanja Stadler (2018). Fast Bayesian Inference of Gaussian Phylogenetic
Models Using Parallel Likelihood Calculation. Methods in Ecology and Evolution.

In this article I present the C++ library SPLITT for Serial and Parallel Lineage Traversal of
Trees. The origin of this tool has been the POUMM R-package used to estimate the heritability
of HIV set-point viral load in the previous two chapters. SPLITT was designed as a low-level
library that deals with the technical difficulties of parallel or serial tree traversal operations
while exposing a handy user interface to higher-level tools. This library is now used as a
back-end by the POUMM R-package and the PCMBase R-package, which will be introduced
in the next chapter 6. In the Appendix of this chapter, I describe a quadratic polynomial rep-
resentation of the likelihood of a single-trait POUMM model. This theoretical development
inspired the next Chapter, where I will describe a generalization of this approach to a larger
family of models.



86 parallel likelihood calculation for gaussian phylogenetic models

abstract

1. Gaussian phylogenetic models have been used to model trait evolution, to measure the
heritability of traits, to test selection versus neutral hypotheses, to estimate optimal trait-
values, and to quantify rates of adaptation. Despite the existence of linear algorithms for
calculating the likelihood of Gaussian models, Bayesian inference on large trees keeps being
a time-intensive task.

2. Speeding-up Bayesian inference is an active field in applied Statistics with numerous
recent developments, ranging from Metropolis sampling with adaptive proposal to parallel
MCMC sampling of conditionally independent parameters and parallel likelihood calcula-
tion assuming independent traits or using parallel linear algebra libraries. For different rea-
sons, few of these techniques apply to Gaussian phylogenetic models. Here, we introduce
parallel likelihood calculation based on parallel tree traversal. Parallel tree traversal has been
used in Computer science to automate the scheduling of dependant tasks, but has, to our
knowledge, not been applied in phylogenetic modeling.

3. We implement several parallel algorithms in the form of a C++ library for Serial and
Parallel LIneage Traversal of Trees (SPLITT). Using univariate and multivariate versions of a
phylogenetic Ornstein-Uhlenbeck mixed model (POUMM), we run benchmarks on up to 24

CPU cores, reporting up to an order of magnitude parallel speed-up on simulated balanced
and unbalanced trees of up to 100,000 tips with up to 16 traits. Noticing that the parallel
speed-up depends on multiple factors, the SPLITT library is capable to automatically select
the fastest traversal strategy for a given hardware, tree-topology and data. Combining SPLITT
likelihood calculation with adaptive Metropolis sampling on real data, we show that the time
for Bayesian POUMM inference on a tree of 10,000 tips can be reduced from several days to
minutes.

4. We conclude that parallel tree traversal effectively accelerates the likelihood calculation
of Gaussian phylogenetic models. For fastest Bayesian inference, we recommend combining
this technique with adaptive Metropolis sampling. Beyond Gaussian models, the parallel
tree traversal can be applied to numerous other models, including discrete trait and birth-
death models. Currently, SPLITT supports multi-core shared memory architectures, but can
be extended to distributed memory architectures as well as graphical processing units.
Keywords: post-order traversal, pre-order traversal, discrete character, continuous trait, phy-
logenetic comparative models, Brownian motion

5.1 introduction

The past decades have seen active development of phylogenetic comparative models (PCMs)
of trait evolution, progressing from null neutral models, such as single-trait Brownian mo-
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tion (BM), to complex multi-trait models incorporating selection, interaction between trait
values and diversification, and co-evolution of traits (Manceau, Lambert, and Morlon, 2016;
O’Meara, 2012). Recent works have shown that, for a broad family of PCMs, the likelihood
of an observed tree and data conditioned on the model parameters can be computed in time
proportional to the size of the tree (FitzJohn, 2012; Goolsby, Bruggeman, and Ané, 2016; Ho
and Ané, 2014a; Manceau, Lambert, and Morlon, 2016). This family includes Gaussian mod-
els like Brownian motion (BM) and Ornstein-Uhlenbeck (OU) phylogenetic models as well
as some non-Gaussian models like phylogenetic logistic regression (Ho and Ané, 2014a; Ives
and Garland, 2010; Paradis and Claude, 2002). All of these likelihood calculation techniques
rely on post-order tree traversal also known as “pruning” (Felsenstein, 1973, 1981; Felsenstein,
1983). For moderate numbers of traits, combining pruning algorithms for likelihood calcula-
tion with gradient-based optimization (Boyd and Vandenberghe, 2004) enables maximum
likelihood model inference within seconds on contemporary computers, even for phyloge-
nies of many thousands of tips (Ho and Ané, 2014a). Despite its simple interpretation and
several useful statistical properties, the maximum likelihood estimator (MLE) has often been
criticised for being a point estimator, prone to be a local optimum and uninformative about
the likelihood surface.

As an elegant alternative, Bayesian approaches such as Markov Chain Monte Carlo (MCMC)
allow incorporating prior knowledge in the model inference and provide posterior samples
and high posterior density (HPD) intervals for the model parameters (FitzJohn, 2012; Slater,
Harmon, and Alfaro, 2012). In contrast with ML inference, though, Bayesian inference meth-
ods require many orders of magnitude more likelihood evaluations. This presents a bottle-
neck in Bayesian analysis, in particular, for complex models of many unknown parameters
or when faced with large phylogenies of many thousands of tips, such as transmission trees
from large-scale epidemiological studies, e.g. Alizon et al. (2010), Bachmann et al. (2017),
Bertels et al. (2017), Blanquart et al. (2017), Hodcroft et al. (2014), Mitov and Stadler (2018),
and Shirreff et al. (2013). While big data should provide the needed statistical power to fit a
complex model, the time needed to perform a full scale Bayesian fit often limits the choice to
a faster but less informative ML-inference, or a Bayesian inference of a simplified model.

Speeding-up Bayesian inference is an active topic in applied Statistics with recent advances
that can be classified in several groups. One group of methods are adaptive variants of the
random walk Metropolis (RWM) algorithm (Metropolis et al., 1953) that aim to decrease the
number of MCMC iterations by performing "on-the-fly" changes of the jump distribution,
based on what has been "learned" about the parameter space from past iterations (Haario,
Saksman, and Tamminen, 2001; Vihola, 2012). A major advantage of these methods is that
they are generic with respect to the models and can be implemented as general purpose
Metropolis samplers (e.g. adaptMCMC (Scheidegger, 2012)). A second group are "pre-fetching"
methods which modify the Metropolis-Hastings algorithm so that it speculatively executes
sequences of individual likelihood calls in parallel, "hoping" that these sequences tend to
match the actual accepted states of the MCMC (Angelino et al., 2014; Brockwell, 2006). An-
other possibility to use multiple processor power, which could potentially be combined with
the above methods is to delegate the parallelization problem to a low level linear algebra
library, e.g. OpenBLAS (Wang et al., 2013).

A separate body of work, to which this work counts, is the ensemble of model-specific
approaches that parallelize the likelihood calculation by using specific features of the likeli-
hood function. These include factorizations of the likelihood into a product of components
associated with conditionally independent subsets of the model parameters (Goudie et al.,
2017; Whiley and Wilson, 2004) or the observed variables (Ayres et al., 2012). Often, this fac-
torization relies on strong model assumptions, such as a hierarchical structure of the model
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parameters or independence of the observed variables. A common approach used in software
packages like BEAST (Bouckaert et al., 2014; Drummond et al., 2012) is to combine the factor-
ization with caching and reusing of some of the previously calculated likelihood components
in consecutive MCMC iterations, as long as these are not affected by the proposed jump in
parameter space.

For a Gaussian phylogenetic model, though, the likelihood cannot be factorized across
parameter groups, trait independence is acceptable only as a null hypothesis and, with a
moderate number of traits and pruning-wise likelihood calculation, parallelizing algebraic
operations (on low-dimensional vectors and matrices) is inefficient. Hence, we explore the
parallelization of the likelihood calculation at the level of traversing the phylogenetic tree,
that is, the pruning. Parallel tree traversal has been studied in Computer science, mostly for
the purposes of parallel tree contraction (Reif, 1989) and automated task scheduling (Qam-
nieh, 2015). Capitalizing on the same ideas, we developed SPLITT: a shared-memory C++
library for Serial and Parallel Lineage Traversal of Trees. While we focus on Gaussian phylo-
genetic models as the main application of the library, we designed the SPLITT programming
interface to be generic with respect to the node-visiting operation, hoping that the library
could potentially find use in different models, including birth-death population models and
discrete trait models. We tested SPLITT on large trees (up to N=100,000) and on different
topologies, including balanced and highly unbalanced trees. These tests proved a nice prop-
erty of the parallel pruning algorithm, namely the fact that its parallel efficiency increases
with the tree size as well as the complexity of the node-visiting operation. Thus, for large
trees and complex models, the parallel speed-up is limited either by the number of available
processors or by another limited resource such as the memory bandwidth.

5.2 materials and methods

5.2.1 Setup

Through the rest of the article we will use the following notation. Given is a rooted phylo-
genetic tree T with a total of M nodes, including N < M tips denoted 1, ..., N, M − N − 1
internal nodes denoted N + 1, ..., M − 1, and a root node denoted M (Fig. 5.1). Without re-
strictions on the tree topology, non-ultrametric trees (i.e. tips have different heights) and
polytomies (i.e. nodes with any finite number of descendants) are accepted. We denote by
Ti the subtree rooted at node i. For any tip or internal node i, we denote its parent node by
Parent(i). For any node j, we denote by Desc(j) the set of its direct descendants (Desc(j) = φ
if j denotes a tip). Furthermore, for any i ∈ Desc(j), we denote by ti the length of the branch
leading to i. Associated with each node i there is an input data in the form of a single or mul-
tivariate categorical or numerical value denoted zi. For tips, zi can be partially unobserved
(having NA entries), while for internal nodes or the root it can also be fully absent (NULL).
We denote by zi the sub-vector of input data for the nodes in Ti. Associated with each node,
i, there is a vector of model parameters, Θi. We use bold style t, z and Θ when denoting the
vectors of all branch lengths, input data and parameters.

5.2.2 A general framework for parallel tree traversal

Let FT (t, z, Θ) be a function of the branch lengths, the input data and the parameters. A post-
order tree traversal algorithm can be used to calculate FT if, for all subtrees Tj of T , there
exist functions Sj(t, z, Θ), hereby called "states", satisfying the following rules:
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Figure 5.1: Parallel pruning. The trees from left to right depict generations of nodes that can be
processed in parallel. The processing of a node consists in calculating its state based on
the input data, the branch lengths and the states of the node’s direct descendants (eq.
5.1). black: nodes having one or more non-processed descendants; red: nodes ready to be
processed; grey: nodes processed in a previous generation. a) a balanced tree; b) a ladder.
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(1) FT (t, z, Θ) can be calculated from SM(t, z, Θ);
(2) For each node j ∈ {1, ..., M}, there exists a (recursive) relationship Rj between Sj and

the set of states at j’s descendants, such that:

Sj(t, z, Θ) = Rj

({
Si(t, z, Θ) : i ∈ Desc(j)

}
, t, z, Θ

)
. (5.1)

We note that analogical terms can be defined for pre-order tree traversal. In this case the
target functions are values ZT ,j(t, z, Θ) corresponding to the nodes j ∈ {1, ..., M}, and rule
(2) is updated to:

(2’) ZM can be calculated from the input data. For each node j ∈ {1, ..., M− 1}, there exists
a (recursive) relationship R′j between Zj and ZParent(j), such that:

Zj(t, z, Θ) = R′j
(
ZParent(j)(t, z, Θ), t, z, Θ

)
. (5.2)

The states, i.e. the values of the functions Sj and Zj, may be deterministic or stochastic func-
tions of the input tree and data. They can be real numbers, vectors, matrices or higher order
combinations thereof. In Supplementary information, we provide example usages of the par-
allel traversal framework. In each of these examples, we solve a particular problem, such as
calculating the likelihood of a continuous time Markov model for a categorical or a contin-
uous trait. In terms of the framework, the task boils down to formulating the node states
Sj(t, z, Θ) and the recursive functions Rj satisfying rules (1) and (2).

For the rest of the article, we focus on parallel post-order tree traversal or "pruning", noting
that the algorithms for parallel pre-order traversal are simple analogies. The SPLITT library
implements both traversal types.

Rule (2) ensures that calculating the state of a node j can be done independently from the
calculation of any other node k, provided that neither j is an ancestor of k, nor k is an ancestor
of j. Based on this observation, we describe two alternative parallel algorithms for calculating
the root state SM, noting that similar formulations of these algorithms can be found in the
Computer science literature (Qamnieh, 2015; Reif, 1989).

5.2.2.1 Queue-based parallel pruning

It is possible to parallelize the computation of the states Sj across multiple computing threads
using a first-in-first-out list (queue) of the nodes in the tree (algorithm 5.1). Initially, the
queue is filled with all tips in the tree and a counter with the number of direct descendants
is set for each internal or root node. Then, each thread takes a node i from the front of the
queue, calculates its state and decrements the counter of Parent(i). If the counter of Parent(i)
has become zero, Parent(i) is added to the queue, so that it will be processed as soon as
a free thread picks it from the queue. Assuming an unlimited number of threads and a
negligible cost of the queue- and the counter- operations, algorithm 5.1 guarantees that a
node will be processed immediately after all of its direct descendants have been processed.
Thus, in theory, algorithm 5.1 maximizes the parallel execution. However, an implementation
of the atomic operations on the queue and the counters would have to rely on a thread
synchonization mechanism such as a mutex, which can be slow on some systems. Thus, a
decent parallelization speed-up would only be possible if the overall cost of synchronization
is insignificant compared to the functions Rj.
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Algorithm 5.1 : Queue-based parallel pruning
Input : T , t, z, Θ

Output : SM(t, z, Θ)
/* a vector of M states */

1 State←− [...]M;
/* a vector of the numbers of remaining descendants for each node */

2 NumDesc←−
[
|Desc(i)| : i ∈ {1, ..., M}

]
;

/* initiate Queue with all tips: */

3 Queue←− [1, ..., N];
4 begin Parallel block
5 while (TRUE) do

/* if Queue is empty, thread waits. */

6 j←−PopFirst(Queue);

7 State[j]←− Rj

({
State[i] : i ∈ Desc(j)

}
, t, z, Θ

)
;

8 if (j < M) then
/* the root has not been processed yet. */

9 NumDesc[Parent(j)]←− NumDesc[Parent(j)]− 1;
10 if (NumDesc[Parent(j)] == 0) then

/* If Queue is currently empty a waiting thread will be

notified. */

11 AddLast(Queue, Parent(j));

12 else
/* the root has been processed. */

/* Notify waiting threads by adding a stopping node-id to Queue.
*/

13 AddLast(Queue, M + 1);
/* All work done, exit the loop. */

14 break;

15 return State[M];
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5.2.2.2 Range-based parallel pruning

We consider an alternative of algorithm 5.1 minimizing the synchronization overhead. This
approach consists in splitting the tree into "generations" of nodes, such that nodes within a
generation can be processed in random order and in parallel, but only if all generations con-
taining descendants of these nodes have already been processed (fig. 5.1). A “master” thread
is responsible for launching a team of “worker” threads on each generation, starting from a
generation of all tips, then taking their parents, and so on until reaching the root of the tree.
To be efficient, this procedure requires that the data associated with the nodes in a generation
occupy a consecutive region in the address-space. This eliminates the need for synchroniza-
tion between the worker threads, because each worker thread can deduce its own portion
based on its thread-id and the address-range of the generation. To orchestrate the worker
teams, the master thread only needs to keep account of the address-ranges. Technically, this
is accomplished by iterating over a vector of offsets (algorithm 5.2).

Algorithm 5.2 : Range-based parallel pruning
Input : T , t, z, Θ

Output : SM(t, z, Θ)
Data :
/* A pre-calculated vector with starting offsets for each generation: */

1 Range =
[
0, N, N + |G1|, N + |G1|+ |G2|, ..., M− 1, M

]
K+1;

/* a vector of M elements */

2 State←− [0, ..., 0]M;
/* The master thread iterates over the generations: */

3 foreach k ∈ {1, ..., K} do
/* The master thread starts a team of worker threads running equal

portions of the following loop: */

4 foreach j ∈ {Range[k] + 1, ..., Range[k + 1]} do

5 State[j]←− Rj

({
State[i] : i ∈ Desc(j)

}
, t, z, Θ

)
;

6 return State[M];

In algorithm 5.2, the number of synchronization points is reduced to the number of gen-
erations, K. In balanced trees, K would increase logarithmically with N and, for big N, the
tree would be split into a few generations of many nodes (fig. 5.1a). Conversely, in strongly
unbalanced trees, K would tend to increase linearly with N and the tree would be split into
many generations of a few nodes (fig. 5.1b). This would result in low parallel speed-up and
excessive synchronization cost for both, the queue-based and the range-based algorithms.
Also noteworthy is the fact that algorithm 5.2 reduces the number of synchronization points
at the cost of some parallelization. If each worker thread gets assigned to an approximately
equal number of nodes in a generation and if a few of the nodes take much longer time to
process than the rest, then most of the worker threads would have to wait until the last node
in the generation has been processed.

These and other subtleties (Supplementary Information) indicate that there is no “one size
fits all” strategy when it comes to maximizing parallel speed-up. The framework provides
two ways to deal with these: (a) allowing the user to choose a parallelization mode before
executing a pruning operation on a given tree and data; (b) providing a mode “auto”, in
which the framework compares the execution time of different pruning algorithms during



5.2 materials and methods 93

the first several calls on a given tree and data, choosing the fastest one for all subsequent
calls.

5.2.3 The SPLITT library

We provide SPLITT in the form of an open source C++ library licensed under version 3.0 of
the GNU Lesser General Public License (LGPL v3.0) and available on https://github.com/

venelin/SPLITT.git. In its current implementation, the library uses the C++11 language
standard, the standard template library (STL) and the OpenMP standard for parallel pro-
cessing. The library is designed as a set of C++ template classes, generic with respect to the
application specific details, such as the types of input data, model parameters and definitions
of the node states, Si, and visit-node functions, Ri. The library defines two layers (fig. S1):

• a framework layer defining the main logical and data structures. These include a linear
algorithm for initial reordering and splitting of the input tree into generations of nodes,
which can be visited in parallel, both during post-order as well as pre-order traversal,
and a growing collection of pre-order and post-order traversal algorithms, targeting
different parallelization modes (e.g. queue-based versus range-based parallelization)
on different computing devices (currently implemented for CPUs only).

• a user layer at which the user of the library must write a CustomTraversalSpecification

class defining all typedefs and methods of the interface TraversalSpecification. The
methods that should be defined by the user are:

– SetParameter(par): sets parameter values, such as model parameters, prior to
tree-traversal.

– InitNode(i): called for each node, i, at the beginning of the traversal; performs
node-specific initialization, based on the parameter-values and the input data; can
be executed both, sequentially or in parallel, depending on the selected paral-
lelization mode; this function is the perfect place to define the calculation of node-
specific state fields or other node-specific data, which depend on the parameters,
the tree and the input data but do not depend on the state/data associated with
other nodes;

– VisitNode(i): called for the root (in pre-order traversals only) and for every inter-
nal and tip node, i, (both, pre-order and post-order traversals) after InitNode(i)

and either after VisitNode(j) and PruneNode(j, i) has been called for each
j ∈ Desc(i) in post-order traversals, or after VisitNode(Parent(i)) has been called
in pre-order traversals. This method is suitable for implementing the logic in the
the function Ri, depending on the parameters, the input data, and the state of the
nodes, on which i’s state depends.

– PruneNode(i, i_parent): called solely in post-order traversals for every node, i, af-
ter the call to VisitNode(i) and before calling VisitNode(Parent(i)). This method
is suitable for updating fields associated with Parent(i) before it gets visited. It
is logically equivalent to leave the implementation of PruneNode(i, i_parent)

empty and have the implementation of VisitNode(i) consult the states of its
daughter nodes.

– StateAtRoot(): returns the state associated with the root of the tree.

The bridge between the two layers is provided by an object of the TraversalTask tem-
plate class (fig. S1). Once the TraversalSpecification implementation has been written, the

https://github.com/venelin/SPLITT.git
https://github.com/venelin/SPLITT.git
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user instantiates a TraversalTask object passing the tree and the input data as arguments.
This triggers the creation of the internal objects of the framework, i.e. an OrderedTree ob-
ject maintaining the order in which the nodes are processed and a PreOrderTraversal or a
PostOrderTraversal object implementing different parallelization modes of the two traver-
sal types. In the ideal use-case, the TraversalTask’s TraverseTree() method will be called
repeatedly, varying the model parameters, the input data and branch lengths on a fixed tree
topology. This encompasses all scenarios where a model is fitted to a fixed tree and data, e.g.
ML or Bayesian PCM inference.

5.3 results

We evaluated the performance of the SPLITT library using a univariate and a multivariate
Phylogenetic Ornstein-Uhlenbeck Mixed Model (POUMM) as a showcase. Previously, we and
other authors have used this model as an estimator of pathogen trait heritability in large HIV
cohorts (Bertels et al., 2017; Mitov and Stadler, 2018). A detailed description of the POUMM
can be found in Supplementary Information and in (Mitov and Stadler, 2018). The univariate
POUMM was implemented in the R-package POUMM, based on a quadratic polynomial rep-
resentation of the log-likelihood (Supplementary Information). The multivariate POUMM
version was implemented in a new R-package, PCMBaseCpp, using a multivariate generaliza-
tion of the quadratic polynomial representation described elsewhere (manuscript in prepa-
ration). The two packages perform post-order tree traversal by linking to SPLITT through
the package Rcpp (Eddelbuettel and Sanderson, 2014). The POUMM is a suitable model for a
comparative benchmark, because a number of R-packages provide similar OU-based phylo-
genetic models, using C++ for the likelihood implementation. These include, among others,
geiger (Pennell et al., 2014) and diversitree (FitzJohn, 2012) for the univariate case and
Rphylopars (Goolsby, Bruggeman, and Ané, 2016) for the multivariate case.

We used the R-package apTreeshape (Bortolussi et al., 2012) to generate tree topologies of
sizes N ∈ {100; 1000; 10, 000; 100, 000}. To generate the trees, we used the function rtreeshape()

with a biased model. A parameter p in this model controls the disproportion of branching
rates for the left and right lineages starting from a given parent node. For each N, we used
four settings for p as follows:

1. p = 0.5 corresponding to equal left and right branching rates and resulting in balanced
trees;

2. p = 0.1 corresponding to unbalanced trees in which one of any two sibling branches
(sharing the same parent node) splits at rate p = 0.1, while the other splits at rate
p′ = 1− p = 0.9 (time units are arbitrary, so we can assume that the rates correspond
to splitting probabilities per unit time).

3. p = 0.01 corresponding to very unbalanced trees (splitting rates of p = 0.01 and p′ =
0.99 for any couple of sibling branches;

4. p = 0.01/N corresponding to a ladder-like tree (see fig. 5.1b, 5.2).

This resulted in a total of 16 topologies (trees for N = 1, 000 shown on fig. 5.2). For each
topology, random branch lengths were assigned overwriting the default branch lengths of
1 assigned by rtreeshape(). Since the OU-implementations in the current diversitree and
Rphylopars versions do not support non-ultrametric trees, each tree was ultrametrized (ad-
justing branch lengths so that all tips have the same root-tip distance). For each tree, we
generated random trait-values using random parameters of the POUMM model.
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p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)

Figure 5.2: Test tree topologies for N = 1, 000. For visualization purpose, all branch lengths have been
set to 1, whereas the random branch lengths were used in the benchmarks.

5.3.1 Time for preprocessing the tree

Each of the tested packages implements a preprocessing step initializing cached data-structures
that are re-used during likelihood calculation. In the case of SPLITT, this is the constructor
of the class TraversalTask (fig. S1); in the case of diversitree, this is the function make.ou;
in the case of geiger, this is the internal function bm.lik. We note that the time for creating
the cache structure is not important in scenarios of fitting Gaussian phylogenetic models to a
fixed tree and data (created once, at the beginning of the inference process). However, these
times become important in the case when the tree topology is inferred together with the
model parameters from trait and sequence alignment data.

We measured the preprocessing time on the 16 trees (table 5.1). The times scaled linearly
with the size of the tree for the packages using the SPLITT library (POUMM and PCMBaseCpp)
and for diversitree. For these packages the time was not affected by the unbalancedness of
the tree. For geiger, we observed longer times, both for bigger N as well as for more unbal-
anced trees. For N = 100, 000 and p = 0.01/N, both, diversitree and geiger failed with a
stack-overflow error. The relatively short times for the SPLITT-based POUMM and PCMBaseCpp

packages indicate that SPLITT could potentially be used for phylogenetic inference.

5.3.2 Time for POUMM likelihood calculation

To measure the likelihood calculation time, we ran performance benchmarks on a MacBook
Pro laptop (Retina, 15-inch, Late 2013) 4 CPU cores and on the "Euler" scientific cluster
(https://scicomp.ethz.ch/wiki/Euler) with up to 24 CPU cores. Here, we comment on the
calculation times on MacBook Pro, noting that the times on Euler for up to 4 CPU cores were
nearly equal (Supplementary Information, figs S3-S7).

We distinguish the different implementations according to the following criteria:
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Table 5.1: Times for tree-preprocessing in milliseconds.

N Implementation p=0.5 p=0.1 p=0.01 p=0.01/N

100 geiger 5 6 9 9

100 diversitree 4 4 4 4

100 SPLITT 2 2 2 1

1,000 geiger 18 26 78 414

1,000 diversitree 20 20 22 30

1,000 SPLITT 3 2 3 3

10,000 geiger 358 449 1,345 355,396

10,000 diversitree 207 211 227 1,338

10,000 SPLITT 14 13 13 15

100,000 geiger 20,215 21,629 36,349 -
100,000 diversitree 2,421 2,619 2,883 -
100,000 SPLITT 130 131 131 140

• Number of traits: we distinguish between univariate implementations, i.e. geiger, diversitree
and POUMM, and multivariate implementations, i.e. Rphylopars and PCMBaseCpp. For the
multivariate implementations, we measured the time for 1, 4, 8 and 16 traits.

• Mode: denotes whether the implementation is single threaded using one physical core
of the CPU - serial, or multi-threaded, running as many threads as there are physical
CPU cores - parallel;

• Order: denotes the order in which the prune-able nodes are processed. We tested three
possible orders: postorder (only for Mode=serial) - the nodes are processed sequentially;
queue-based (only for Mode=parallel) - the nodes are processed in parallel as they
enter the queue (see algorithm 5.1), synchronized thread access to the queue; range-
based (only for Mode=parallel) - the nodes in each pruning generation are processed
in order of their allocation in memory, no need for a synchronized access to a queue
(see algorithm 5.2).

• Implementation: the R-package and the back-end used (R or C++).

The resulting times for the univariate implementations running on the MacBook Pro com-
puter are shown on fig. 5.3.

On small trees of 100 tips, the fastest univariate POUMM implementations were the serial
C++ implementations from the packages POUMM and diversitree (about 0.03 ms); the range-
based parallel implementation was nearly as fast on balanced trees (p = 0.5) but was progres-
sively slower on unbalanced trees. The geiger implementation was nearly an order of mag-
nitude slower (0.2 ms). The POUMM queue-based parallel implementation was nearly 100

times slower (nearly 2 ms), presumably due to the excessive synchronization overhead. The
serial R implementation from the diversitree package was the slowest (above 2 ms), which
was expected, since the R interpreter is notorious for its slow speed compared to compiled
languages like C++. On bigger balanced trees (N > 100, p = 0.5), the range-based parallel
implementation took over, reaching up to 4× speed-up with respect to the range-based serial
implementation, up to 5× speed-up with respect to the postorder serial implementation and
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p = 0.5  (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)
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Figure 5.3: Likelihood calculation times for univariate R and C++ implementations of the POUMM
model on a MacBook Pro late 2013 computer (processor Intel(R) Core(TM) i7-4850HQ
CPU @ 2.30GHz with four physical cores). Both, the x−axis denoting the number of tips
in the tree and the y−axis denoting the calculation time in milliseconds are on a log-10

scale. Panels from left to right correspond to different tree topologies with left-most panel
corresponding to a perfectly balanced tree and right-most panel corresponding to a ladder
tree, see also fig. 5.2.
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Figure 5.4: Likelihood calculation times for multivariate C++ implementations of the POUMM model
on a MacBook Pro late 2013 computer (processor Intel(R) Core(TM) i7-4850HQ CPU @
2.30GHz with four physical cores). The panel layout and the x, y−axes are the same as
on fig. 5.3. For simplicity, only serial and parallel range modes are shown, noting that the
parallel queue mode had slightly slower times compared to the parallel range mode.

up to 10× speed-up with respect to the diversitree serial C++ implementation. This reveals
a consistent speed-up for all trees except the ladder tree, where parallelization of the internal
nodes is not possible (see fig. 5.1b and 5.2). The time for the other serial implementations
and the POUMM queue-based parallel implementation scaled up linearly with N.

The times for the multivariate implementations running on the MacBook Pro computer
are shown on fig. 5.4. For these implementations, the likelihood calculation times were about
two orders of magnitude higher compared to the univariate implementations. This is due to
slow algebraic operations, for example arithmetic division in the univariate case as opposed
to matrix inversion in the multivariate case.
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5.3.3 Parallel speedup

The parallel speed-ups for the Euler cluster benchmark for univariate implementations and
for multivariate implementations with 16 traits are shown on figs. S8 and 5.6 (see also figs.
S8-S10, for multivariate implementations with 1, 4 and 8 traits).

For univariate implementations, the parallel speed-up is negligible for trees of less than
1000 tips aND for highly unbalanced tree (fig. S8. The parallel speed-up becomes noticeable
for large balanced trees, peaking at 10x for a balanced tree of 100,000 tips, running on 20 CPU
cores (fig. S8). The above behaviour is explained by the fact that the init-node and visit-node
operations in the univariate case are very fast relative to the thread-management operations.
Also noteworthy is the fact that even on balanced trees above 100,000 tips, the parallel effi-
ciency, i.e. the ratio of the parallel speed-up and the number of parallel cores, drops below
50% when running on more than 20 CPU cores. This suggests a possible competition between
the CPU cores for a limited resource such as the processor cache or the memory bandwidth.

For the multivariate implementations, the init-node and visit-node operations are computa-
tionally more intensive. This is why we observe substantial parallel speed-up on the smallest
as well as the most unbalanced trees trees (fig. 5.6). However, for all multivariate cases, we
observe a decline in parallel speed-up with more than 12 CPU cores (fig. 5.6). The most rea-
sonable explanation for this is competition between the CPU cores for a limited hardware
resource.

5.4 discussion

The examples in this article focused on Gaussian models of continuous trait evolution (Sup-
plementary Information), yet, SPLITT can in principle be used for any algorithm that runs a
pre-order or post-order tree traversal. For example, another family of models where SPLITT
could be used are models of structured populations. When calculating the likelihood for a
phylogenetic tree under a structured birth-death model, the calculations proceed in a prun-
ing fashion (Kühnert et al., 2016) and may be improved with respect to speed using our
approach. However, the structured coalescent likelihood for a tree is a function of all co-
existing lineages even for approximate methods (Müller, Rasmussen, and Stadler, 2017), and
thus a pruning formulation is not available.

We did not develop examples of pre-order traversal. One such example is the simulation of
traits evolving along the tree, which can be used for validation and approximate inference of
phylogenetic models. In complex phylogenetic comparative models, where an exact calcula-
tion of the likelihood is elusive or computationally intractable, it is possible to use simulations
of trait evolution along the tree for approximate likelihood calculation (Kutsukake and Innan,
2013) or approximate Bayesian computation (ABC) (Slater et al., 2012). Both approaches are
computationally intensive and could benefit from parallel execution using SPLITT.

We should not omit mentioning other software libraries implementing parallel likelihood
computation of different Markov models of sequence evolution. For example, several high
level tools for ML and Bayesian tree inference, e.g. Bouckaert et al. (2014), Drummond et al.
(2012), and Ronquist and Huelsenbeck (2003), use the library BEAGLE which distributes the
computation for the independent sites of the sequence alignment among multiple CPU or
GPU cores (Ayres et al., 2012). SPLITT operates on a different level, namely, it parallelizes the
computation for independent lineages in the tree. Both approaches are interesting because
they fit well to different sizes of the input data - while BEAGLE achieves significant paral-
lel speed-ups in long alignments comprising many thousands nucleotide or codon columns
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Figure 5.5: Parallel speed-up for the univariate POUMM implementation on the Euler cluster (package
POUMM). The grey and red lines denote, the expected speed-up at 100% and 50% parallel
efficiency, respectively. Horizontally, the panels correspond to the different tree topologies,
see also fig. 5.2. Vertically, the panels correspond to the different tree-sizes.
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Figure 5.6: Parallel speed-up for the multivariate POUMM implementation (package PCMBaseCpp) on
the Euler cluster. The grey and red lines denote, the expected speed-up at 100% and 50%
parallel efficiency, respectively. Horizontally, the panels correspond to the different tree
topologies, see also fig. 5.2. Vertically, the panels correspond to the different tree-sizes.
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(Ayres et al., 2012), SPLITT is better suited to shorter alignments of potentially many thou-
sands of species.

Based on the performance benchmarks, we conclude that with the current implementation
of SPLITT, running on the above-mentioned hardware, the parallel speed-up from parallel
tree traversal is up to one order of magnitude using up to 20 CPU cores. For comparison,
Ayres et al., 2012 report up to 33x speed-up with BEAGLE on a codon alignment of less
than 20 sequences with 6000 codons, using double floating point precision on a GPU of 600

cores. A future GPU-based extension of SPLITT would show if it can reach higher levels of
parallel speed-up and efficiency. Reaching higher speed-up of the Bayesian inference, though,
is possible if the parallel traversal likelihood calculation is combined with a general purpose
adaptive Metropolis sample. An example application of this combined approach to real data
is given in Supplementary Information.

5.4.1 Outlook

The past decade has seen a rapid advance in the production of multi-core processors. At
the same time, it appears that the maximum clock frequency of a single processing unit
is approaching the maximum achievable for semi-conductor based architectures. In parallel
with this development on the hardware side, the volume of sequence data and the size of
phylogenetic trees is growing exponentially. For instance, in less than five years the size of
phylogenetic trees used for calculating the heritability of HIV virulence has increased from a
few hundreds to several thousand patients (Alizon et al., 2010; Bachmann et al., 2017; Bertels
et al., 2017; Blanquart et al., 2017; Hodcroft et al., 2014). This motivates the development of
novel parallel algorithms capitalizing on the multi-core technology. The parallel tree traversal
library, SPLITT, enables parallel computation for a vast set of phylogenetic models, facing the
challenges of increasing model complexity and volumes of data in phylogenetic analysis.

5.5 supplementary material

Data from the performance benchmarks and simulations for technical correctness is available
on the SPLITT github page https://github.com/venelin/SPLITT. The POUMM package and
user guide is available at https://github.com/venelin/POUMM. The PCMBaseCpp package is
available at https://github.com/venelin/POUMM.
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A P P E N D I X

5.a examples of using the parallel tree traversal framework

In this section, we show example usages of the parallel traversal framework. In each of these
examples, we solve a particular problem, such as calculating the likelihood of a continuous
Markov model for a categorical or a continuous trait. In terms of the framework, the task
boils down to formulating the node states Sj(t, z, Θ) and the recursive functions Rj satisfying
rules (1) and (2).

5.a.1 Example 1. Gaussian models of continuous trait evolution

Ho and Ané (2014a) noticed that the computational complexity in multivariate Gaussian
and some non-Gaussian models concentrates in the calculation of determinants |VΘ| and
quadratic quantities of the form QΘ = X′ΘV−1

Θ YΘ, where VΘ represents the variance covari-
ance matrix expected under the model specified by Θ and the matrices XΘ and YΘ represent
centered observed data at the tips in the tree. For example, in the case of Brownian motion
and Ornestein-Uhlenbeck models, the log-likelihood function is equal to the log-density of a
multivariate Gaussian distribution:

ln f (z|Θ) = −1
2

(
N ln(2π) + ln |VΘ|+ (z− ¯Θ)

′V−1
Θ (z− ¯Θ)

)
, (S1)

where VΘ = Σ and ¯Θ = ¯ (table S1).
Ho and Ané (2014a) developed a pruning algorithm which allows to calculate |VΘ| and

QΘ simultaneously and without constructing or allocating the matrix VΘ in memory, pro-
vided VΘ has a "3-point structure". Then, they showed several examples of Gaussian models
such as Brownian motion and Ornstein-Uhlenbeck, as well as non-Gaussian models, such
as phylogenetic logistic and Poisson regression, where VΘ is or can be "converted" to a 3-
point structured matrix (discussed later). Adapting the notation from (Ho and Ané, 2014a,



104 parallel likelihood calculation for gaussian phylogenetic models

Table S1: Population properties at the tips of the phylogeny under BM and OU models and their
mixed counterparts The acronyms are: PBM - Phylogenetic Brownian motion (without non-
heritable component); PMM - Phylogenetic Mixed Model (adding a non-heritable compo-
nent to PBM); POU - Phylogenetic Ornstein-Uhlenbeck (without non-heritable component),
also known as "Hansen’s model" or Single Stationary Peak (SSP); POUMM - Phylogenetic
Ornstein-Uhlenbeck Mixed Model (adding a non-heritable component to the POU model.
Expressions for the OU-models were adapted from (Hansen, 1997). µΘ,i: expected value at
tip i; VΘ,ii: expected variance for tip i; VΘ,ij: expected covariance of the values of tips i and
j.

PBM PMM POU POUMM

Θ: < gM, σ > < gM, σ, σe > < gM, α, θ, σ > < gM, α, θ, σ, σe >

µΘ,i: gM gM e−αhi gM +
(
1− e−αhi

)
θ e−αhi gM +

(
1− e−αhi

)
θ

VΘ,ii: σ2 hi σ2 hi + σ2
e

σ2

2α

(
1− e−2αhi

)
σ2

2α

(
1− e−2αhi

)
+ σ2

e

VΘ,ij: σ2 h(ij) σ2 h(ij) σ2

2α e−αdij
(

1− e−2αh(ij)
)

σ2

2α e−αdij
(

1− e−2αh(ij)
)

p. 399), we define the node states as Sj(t, z, Θ) =
〈

pA,j, pj, µ̂Y,j, µ̃′X,j, ln |V|j, Qj

〉
. The recursive

functions Rj follow immediately from points 1 and 2 of the algorithm (Ho and Ané, 2014a):





Sj(t, z, Θ) = 〈 pA,j = 0,

pj =
1
tj

,

ˆ̄Y,j = yΘ,j,

˜̄′
X,j = x′Θ,j,

ln |V|j = ln tj,

Qj = x′Θ,jyΘ,j 〉

if j ≤ N

Sj(t, z, Θ) = 〈 pA,j = ∑i∈Desc(j) pi,

pj =
pA,j

1+tj pA,j
,

ˆ̄Y,j = ∑i∈Desc(j)
pi
pA

ˆ̄Y,i,

˜̄′
X,j = ∑i∈Desc(j)

pi
pA

˜̄′
X,i,

ln |V|j = ∑i∈Desc(j) ln |V|i + ln(1 + tj pA,j),

Qj = ∑i∈Desc(j) Qi + ln(1 + tj pA,j) 〉

otherwise.

(S2)

The caveat in applying the 3-point algorithm is that except for BM models, the matrix VΘ

does not necessarily satisfy the 3-point condition (Ho and Ané, 2014a). As the authors show,
it is still possible to use the algorithm in that case, provided that VΘ satisfies a "generalized 3-
point condition" (Ho and Ané, 2014a). More precisely, in most of their examples, the authors
showed that there exist a transformation of the branch lengths, t̃, diagonal matrices D1 and
D2 with non-zero diagonal elements and a 3-point structured matrix ṼΘ, such that ṼΘ is
equal to the variance-covariance on the tree T̃ with the transformed branch lengths and
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VΘ = D1ṼΘD2. If so, the algorithm is applied to ṼΘ using t̃ and transformed data X̃ = D−1
2 X,

Ỹ = D−1
1 Y. Then the quadratic form of interest, QΘ, would be equal to the resulting quadratic

form at the root, QM and the determinant |VΘ| is obtained by the formula:

|VΘ| = |D1||ṼΘ||D2| (S3)

5.a.2 Example 2: The phylogenetic Ornstein-Uhlenbeck mixed model

Here, we describe a phylogenetic Ornstein-Uhlenbeck mixed model of continuous trait evolu-
tion, which we and other authors have used previously to analyze the evolution of set-point
viral load in HIV patients (Bachmann et al., 2017; Bertels et al., 2017; Blanquart et al., 2017;
Mitov and Stadler, 2016, 2018).

5.a.2.1 The model

Consider a continuous trait evolving independently along the lineages of a phylogenetic tree,
T with branch lengths t. The phylogenetic Ornstein-Uhlenbeck mixed model (POUMM) de-
composes the trait value as a sum of a non-heritable component, e, and a genetic component,
g, which (i) evolves continuously according to an Ornstein-Uhlenbeck (OU) process along
branches; (ii) gets inherited by the branches descending from each internal node. In biologi-
cal terms, g is a genotypic value (Lynch and Walsh, 1998) that evolves according to random
drift with stabilizing selection towards a global optimum; e is a non-heritable component,
which can be interpreted in different ways, depending on the application, i.e. a measurement
error, an environmental contribution, a residual with respect to a model prediction, or the
sum of all these. The OU-process acting on g is parameterized by an initial genotypic value
at the root, gM, a global optimum, θ, a selection strength, α>0, and a random drift unit-time
standard deviation, σ. Denoting by Wt the standard Wiener process (Grimmett and Stirzaker,
2001), the evolution of the trait-value, z(t), along a given lineage of the tree is described by
the equations:

z(t) = g(t) + e (S4)
dg(t) = α[θ − g(t)]dt + σdWt (S5)
g(0) = gM, (S6)

The stochastic differential equation S5 defines the OU-process, which represents a random
walk tending towards the global optimum θ with stronger attraction for bigger difference
between g(t) and θ (Ornstein and Zernike, 1919; Uhlenbeck and Ornstein, 1930). The model
assumptions for e are that they are independent and identically distributed (i.i.d.) normal
with mean 0 and standard deviation σe at the tips. Any process along the tree that gives rise
to this distribution at the tips may be assumed for e. For example, in the case of epidemics, a
newly infected individual is assigned a new e-value which represents the contribution from
its immune system and this value can change or remain constant throughout the course of
infection. In particular, the non-heritable component e does not influence the behavior of the
OU-process g(t). Thus, if we were to simulate trait values z on the tips of a phylogenetic
tree T , we could first simulate the OU-process from the root to the tips to obtain g, and
then add the white noise e (i.e. an i.i.d. draw from a normal distribution) to each simulated
g value at the tips. The POUMM represents an extension of the phylogenetic mixed model
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(PMM) (Housworth, Martins, and Lynch, 2004; Lynch, 1991), since, in the limit α → 0, the
OU-process converges to a Brownian motion (BM) with unit-time standard deviation σ. Both,
the POUMM and the PMM, define an expected multivariate normal distribution for the trait
values at the tips. The mean vectors and the variance-covariance matrices of these distribu-
tions are written in table S1. Note that the trait expectation and variance for a tip i depends
on its height (hi), and the trait covariance for a pair of tips (ij) depends on the height of their
mrca (h(ij)), and, in the case of POUMM, on their patristic distance (dij) (table S1).

5.a.2.2 Calculating the POUMM likelihood

Here we describe two ways to calculate the POUMM likelihood using a post-order traver-
sal of the tree, which can be easily incorporated with the framework. The first approach is
based on the generalized 3-point structure algorithm (Ho and Ané, 2014a). This approach
has the caveat that it requires a model-specific branch-length transformation. The second ap-
proach is based on direct integration over the ancestor genotypic values at the internal nodes,
capitalizing on a recurrent quadratic polynomial formula. Previously, a similar integration
technique has been described in (FitzJohn, 2012). The advantage of the quadratic polynomial
representation described here is that it can be generalized to multivariate OU models as well
as a more general class of Gaussian models (in preparation).

generalized 3-point structure of the poumm variance-covariance matrix

The POUMM likelihood is defined as the multivariate probability density of an observed
vector z at the tips of T for given model parameters Θ =< gM, α, θ, σ, σe >:

``(Θ) = ln( f (z|T , t, Θ)). (S7)

The probability density function, f is multivariate Gaussian with mean vector ¯Θ and
variance-covariance matrix VΘ written in table S1. Since VΘ has a generalized 3-point struc-
ture (Ho and Ané, 2014a), we can apply the recursion in eq. S2, upon a transformation of
the branch lengths and the data. This is obtained through adapting the transformation for
an non-mixed OU-model in a ultrametric tree (Ho and Ané, 2014a) to accommodate the
non-heritable variance:

t̃i =
σ2

2α

[
e2αT(e2αhi − e2αhParent(i)

)]
+ σ2

e
e2αui

δ(i ≤ N) for i ∈ {1, ..., M− 1} (S8)

X̃i = Ỹi =
zi−µi
eαui for i ∈ {1, ..., N}, (S9)

where X̃ and Ỹ are identical N-vectors, T is the maximum tip-height in the tree and ui =
T − hi for i ∈ {1, ..., N}. After running the post-order traversal, using eq. S2 as a visit-node
operation, we apply eq. S3, to obtain |VΘ| and eq. S1 to obtain the log-likelihood.

We note that the branch transformation (eq. S8) can be done "locally" on every branch,
using pre-calculated heights of the parent and daughter nodes connected by the branch. Thus,
it is safe to include the transformation in the visit-node operation and the parallelization of
pruning would not suffer. Otherwise, the transformation would have had to be done in a
preprocessing step. Again, this is a model specific consideration.
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a quadratic polynomial representation of the poumm log-likelihood We
begin by defining for each nodes j states, Sj(t, z, Θ), and recursive functions Rj that allow the
calculation of the likelihood, ``(Θ), from SM. It turns out that ``(Θ) has a simple represen-
tation as a quadratic polynomial of gM (root state), which can be obtained by pruning–wise
integration over the unobserved internal node states, gi, progressing from the tips to the root.
We formalize this idea in the following theorem:

Theorem 1 (Recurrent quadratic polynomial representation of the POUMM log-likelihood).
For α ≥ 0, a real θ and non-negative σ and σe, the POUMM log-likelihood can be expressed as a
quadratic polynomial of gM:

``(Θ) = aMg2
M + bMgM + cM, (S10)

where aM < 0, bM and cM are real coefficients. We denote by u(α, t) the function:

u(α, t) :=





α/(1− eαt), for α > 0

−1/t, for α = 0
(S11)

Then, the coefficients in eq. S10 can be expressed with the following recurrence relation:
1. For j ∈ {1, ..., N} (tips):

aj = −
1

2σ2
e

; bj =
zj

σ2
e

; cj = −
z2

j

2σ2
e
− ln

√
2πσ2

e (S12)

2. For j > N (internal nodes) or j = M (root):

aj = ∑
i∈Desc(j)

aiu(α, 2ti)

u(α, 2ti)− α + σ2ai

bj = ∑
i∈Desc(j)

u(α, 2ti)
[
2θai(eαti − 1) + bieαti

]

u(α, 2ti)− α + σ2ai

cj = ∑
i∈Desc(j)

{
ci + αti −

0.25 b2
i σ2

−α + aiσ2 + u(α, 2ti)
−

0.5 ln
(−α + aiσ

2 + u(α, 2ti)

u(α, 2ti)

)
+

αθ
[
aiθ − (bi + aiθ)eαti

]

u(α, ti) + (−α + aiσ2) (1 + eαti)

}
.

(S13)

Proof. Induction from the tips to the root of the tree.

• Basis: For a tip-node i, Ti is the trivial tree consisting of this tip-node only and the pdf
of zi, conditioned on the unobservable genotypic value gi, is given by the normal pdf
with mean gi and variance σ2

e . This pdf can be written as:

f (zi|gi; σe) = N (zi; gi, σ2
e )

= 1√
2πσ2

e
e
− (zi−gi)

2

2σ2
e

= e
− 1

2σ2
e

g2
i +

zi
σ2

e
gi−

z2
i

2σ2
e
−0.5 ln(2πσ2

e )

(S14)
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By defining ai = − 1
2σ2

e
, bi = zi

σ2
e

and ci = − z2
i

2σ2
e
− 0.5 ln(2πσ2

e ) and taking the natural
logarithm of the pdf we obtain the log-likelihood representation from eq. S10, where
aM < 0, bM and cM can be calculated from the observed value zi and the model param-
eter σe.

• Inductive hypothesis: Assume that for an internal node j, the statement of the theorem
has been proven for all subtrees Ti, i ∈ Desc(j).

• Inductive step: Assuming that gj is known, we consider the OU process starting from gj
and parametrized by α and σ. Under this process, the expected distribution at time ti

is normal with mean µji = e−αti gj + (1− e−αti)θ and variance σ2
ji = (1− e−2αti) σ2

2α . Then,
the probability of zi given gj is given by the integral

f (zi|Θ, ti, gj) =
∞∫
−∞

f (gi|Θ, ti, gj)× eai g2
i +bi gi+ci dgi

=
∞∫
−∞
N
[

gi; µji, σ2
ji

]
× eai g2

i +bi gi+ci dgi

=
∞∫
−∞

e(pji+ai)gi
2+(qji+bi)gi+(rji+ci)dgi , where

pji = − 1
2σ2

ji
= − αe2αti

σ2(e2αti−1)

qji =
µji

σ2
ji
=

2αeαti [gj+θ(eαti−1)]
σ2(e2αti−1)

rji = − µ2
ji

2σ2
ji
− 1

2 ln(2πσ2
ji)

= − α[gj+θ(eαti−1)]
2

σ2(e2αti−1)
− 1

2 ln
(

πσ2(1−e−2αti)
α

)

(S15)

We notice that pji, qji and rji in eq. S15 are not defined in the case of BM (α = 0). In this
case, we take the limit for α → 0 represented by the case α = 0 of function u(α, t) (eq.
S11). By substituting u(α, t) in the expressions for pji, qji, rji (eq. S15) we obtain:

pji = e2αti u(α, 2ti)
σ2

qji = − u(α, 2 ti)[gj+θ(eαti−1)]
σ2

rji =
u(α, 2 ti)[gj+θ(eαti−1)]

2

σ2 − 1
2 ln

(
− πσ2

u(α, 2ti)e2αti

)
.

(S16)



5.A examples of using the parallel tree traversal framework 109

Since ai < 0 and, for positive t and α ∈ [0, ∞), u(α, t) accepts strictly negative values
in the interval [−1/t, 0), the integral in eq. S15 has a closed form solution:

∞∫
−∞

e(pji+ai)g2
i +(qji+bi)gi+(rji+ci)dgi

= exp
[
−(qji+bi)

2

4(pji+ai)
+ (rji + ci) + ln

(√
π

−(pji+ai)

)]

= eaji g2
j +bji gj+cji , where

aji = aiu(α,2ti)
u(α,2ti)−α+σ2ai

bji = u(α,2ti)(eαti (2θai+bi)−2θai)
u(α,2ti)−α+σ2ai

cji = ci + αti − 0.25 b2
i σ2

−α+aiσ2+u(α,2ti)
−

0.5 ln
(
−α+aiσ

2+u(α,2ti)
u(α,2ti)

)
+

αθ[aiθ−(bi+aiθ)eαti ]
u(α,ti)+(−α+aiσ2)(1+eαti)

(S17)

In eq. S17 above, aji < 0 because it is a fraction with a positive nominator and a neg-
ative denominator (note that ai < 0 by the inductive hypothesis and u(α, 2ti) < 0 by
definition). Since the vectors zi, i ∈ Desc(j), are conditionally independent given gj, the
conditional pdf of zj factorizes as:

f (zj|Θ, gj, Tj) = ∏
i∈Desc(j)

f (zi|Θ, ti, gj)

= ∏
i∈Desc(j)

eaji g2
j +bji gj+cji

= exp




 ∑

i∈Desc(j)
aji


 g2

j +


 ∑

i∈Desc(j)
bji


 gj + ∑

i∈Desc(j)
cji


 .

(S18)

By denoting aj = ∑i∈Desc(j) aji, bj = ∑i∈Desc(j) bji and cj = ∑i∈Desc(j) cji and noticing that
aj < 0 as a sum of negative terms, we have proven the inductive step and, thus, the
theorem.

5.a.3 Example 3: Models of categorical trait evolution

Before moving on to the main show-case of this work, it is worthy mentioning that SPLITT
can be readily applied to any pruning-wise calculation, including calculating the likelihoods
of categorical trait models. Consider a trait taking values in {0, 1} evolving independently
along the lineages of a phylogenetic tree, T with branch lengths t. A continuous-time Markov
model can be used to characterize the transitions of the trait value along each branch (Felsen-
stein, 1983; Pagel, 1994). This model assumes constant rates of change from 0 to 1, q01 and
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from 1 to 0, q10, representing the probability that the change has occurred during an infinites-
imal interval of time. These rates are used to define a rate matrix:

Q =

[
−q01 q01

q10 −q10

]
. (S19)

Given Q, the transition probability matrix P(t) for an arbitrary long period t is given by

P(t) =

[
P00(t) P01(t)
P10(t) P11(t)

]
= C

[
eλ1t 0
0 eλ2t

]
C−1 (S20)

where λi are the eigenvalues of Q and C is a matrix, which’s ith column represents the ith

eigenvector of Q (Pagel, 1994). Assuming that the value at the root is known to be zM, we
want to find the probability with which the model specified by the parameters Θ = (q01, q10)
generates an N-vector of values, z observed at the tips. This represents the conditional likeli-
hood LT (t, z, Θ, zM). The pruning algorithm for calclulating L relies on calculating the “frag-
mentary” likelihood Li(b) = P(zi|zi = b; Θ) for each node i and each b ∈ {0, 1} (Felsen-
stein, 1983). In terms of the framework, we define the state Sj(t, z, Θ) of a node j as the pair
< Lj(0), Lj(1) >. Following eq. 4 in (Felsenstein, 1983), the recursive Rj are given by:

Sj(t, z, Θ) =





〈
δ(zj = 0), δ(zj = 1)

〉
if j is a tip〈

∏i∈Desc(j)
[
∑zi

P0zi(ti)Li(zi)
]

, ∏i∈Desc(j)
[
∑zi

P1zi(ti)Li(zi)
]〉

if j is internal,

(S21)

where we use the Kronecker delta function δ(x = y) equalling to 1 if x = y and 0, otherwise.
In the above eqation S21, the values Li(zi) are available from the descendants’ states Si.
Finally, the conditional likelihood LT (t, z, Θ, zM) is given by LM(zM), which is one of the
two members in SM.

The above model can be extended to a multivariate case, such as calculating the probability
of a nucleotide or aminoacid sequence alignment as is the case in (Felsenstein, 1983). Suppose
that there are p nucleotide sites, which are evolving independently. Then, the state for a node
j would represent a p× 4 matrix

Sj(t, z, Θ) =




L(1)
j (A) L(1)

j (C) L(1)
j (T) L(1)

j (G)
...

...
...

...
L(p)

j (A) L(p)
j (C) L(p)

j (T) L(p)
j (G)


 , (S22)

where the letters A, C, T and G denote the nucleotides and the superscript in parentheses
denotes a site in the alignment. To define the recursive functions Rj, equation S21 can be
extended to accomodate one row of Sj (four possible values instead of two) and evaluated p
times to obtain the full state.
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The model can also be extended to support correlated evolution between the sites. As
shown in (Pagel, 1994), this involves extending the rate matrix Q to embed transition rates
between pairs, triplets or higher order combinations of sites in the sequence. Accounting
for correlated evolution between combinations of sites dramatically increases the computa-
tional complexity, but does not present a conceptual change from the point of view of the
pruning operation. Thus, accommodating such models in the framework, although involved
technically, should not present a conceptual challenge.

5.b other parallelization strategies

5.b.1 Hybrid parallel/sequential strategies

An important problem occurring with all parallel pruning strategies is that the number of lin-
eages tends to decreases exponentially towards the root of the tree. As a result, if the original
thread-team consisted of numerous threads each one reserving one of multiple processing
cores, there will be many idle threads/cores as the pruning approaches the root. While this
issue could potentially be solved at the level of the multi-threading back-end, it is possible
to implement a hybrid pruning strategy similar to the rake-compression algorithm described
in (Reif, 1989). Reif (1989) introduce two operations: rake (could be seen as the parallel calcu-
lation on the nodes in one generation) and compress (compression of chains). For example,
on a ladder tree (fig. 5.1b), after visiting the generation of tips, one obtains a chain: the chain
should be processed sequentially on one thread (compressed), thus, reducing the synchro-
nization thread-starvation issues.

5.c design of the splitt library
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«implicit interface»
«template»

Tree<NodeType, LengthType> 

protected fields: 
# num_tips_: uint 
# num_nodes_: uint 
# id_parent_: uvec 
# id_child_nodes: vector<uvec> 
# lengths_: vector<LengthType> 
# map_node_to_id: 
          unordered_map<NodeType, uint> 
# map_id_to_node_: vector<NodeType> 

public typedefs: 
+ «i» NodeType 
+ «i» LengthType 

public constructor: 
+ «i» Tree( 
    branch_start_nodes: vector<NodeType> const&,
    branch_end_nodes: vector<NodeType> const&,
    branch_lengths: vector<LengthType> consi& ) 
    
public methods: 
+ «i» FindNodeWithld(i: uint): NodeType const& 
+ «i» FindIdOfNode(node: NodeType const&): uint
+ «i» LengthOfBranch(i: uint): LengthType const& 
+ «i» FindIdOfParent(id_child: uint): uint 
+ «i» FindChildren(i: uint): uvec const& 
+ «i» OrderNodes(nodes: vector<NodeTyce> const&): 
uvec 

«implicit interface»
«template»

OrderedTree<NodeType, LengthType>

protected fields: 
# ranges_id_visit_: uvec 
# ranges_id_prune_: uvec 

public constructor: 
+ OrderedTree( 
    branch_start_nodes: vector<NodeType> const&,
    branch_end_nodes: vector<NodeType> const&,
    branch_lengths: vector<LengthType> const& ) 
    
public methods: 
+ «i» RangeldVisitNode(i_level: uint): pair<uint,uint> 
+ «i» RangeldPruneNode(i_step: uint): pair<uint,uint> 
 

«implicit interface»
«template»

TraversalSpecification<TreeType> 

protected fields: 
# ref_tree_: TreeType const& 

public typedefs: 
+ «i» TreeType 
+ «i» AlgorithmType 
+ «i» ParameterType 
+ «i» DataType 
+ «i» StateType 

public constructor: 
+ «i» TraversalSpecification( 
      tree: TreeType &,
      input_data: DataType &)
                          
public methods: 
+ «i» SetParameter(par: ParameterType &) 
+ «i» InitNode(i: uint): void 
+ «i» VisitNode(i: uint): void
+ «i» PruneNode(i: uint, i_parent: uint): void 
+ «i» StateAtRoot(): StateType 

«implicit interface»
«template»

TraversalAlgorithm<TreeType> 

protected fields: 
ref_spec_: TraversalSpec & 
ref_tree_: TraversalSpec::TreeType const& 

public typedefs: 
+ «i» ModeType 

public constructor: 
+ «i» TraversalAlgorithm( 
     tree: TraversalSpec::TreeType const &, 
     spec: TraversalSpec &) 

public methods: 
+ «i» TraverseTree(mode: ModeType): void

PreOrderTraversal PostOrderTraversal

Framework layer

«template»
«runtime-entry-point-object»

TraversalTask<TraversalSpecification> 

protected fields: 
# spec_: TraversalSpecification
 
# tree_: TraversalSpecification::TreeType 

# algorithm_: 
   TraversalSpecification::AlgorithrnType 

public constructor:
+ TraversalTask(
    branch_start_nodes: vector<NodeType> const&,
    branch_end_nodes: vector<NodeType> const&,
    lengths: vector<LengthType> const&,
    input_data: 
       TraversalSpecificcation::DataType const&)

public properties (access to components): 
+ spec: TraversalSpecification & 
+ tree: TraversalSpecification::TreeType & 
+ algorithm: TraversalSpecification::AlgorithmType& 

public methods: 
+ TraverseTree( 
 par: TraversalSpecification::ParameterType const&, 
 mode: uint): TraversalSpecification::StateType 

User layer

ThreePointMultivariate

ThreePointUnivariate

ThreePointPBM

ThreePointPMM

ThreePointPOUMM

Figure S1: A class diagram of the SPLITT library In the framework layer, the class
TraversalSpecification defines the application-specific data types and logic; the class
Tree serves as a base-class implementing common tree operations, such as constructing a
tree from a list of branches, checking the validity of the input (e.g. lack of cycles or isolated
branches), finding the parent and the descendants of a node, etc; the class OrderedTree
maintains the order of the nodes in a tree so that they can be split in contiguous generations
for parallel post-order or pre-order traversal; the class TraversalAlgorithm serves as a base
class and an implicit interface for its two subclasses implementing the two supported types
of tree traversal: PreOrderTraversal and PostOrderTraversal. At the user layer are the
user defined implementations of the TraversalSpecification interface (shown in green)
and an instance of the TraversalTask class, which constructs all necessary internal objects
and serves as a runtime entry point to the framework.
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5.d the poumm r-package

We implement the POUMM model in the form of an R-package called POUMM, which embeds
the SPLITT library as an Rcpp module. Before model fitting, the user can choose from differ-
ent POUMM parametrizations and prior settings (function specifyPOUMM). A set of standard
generic functions, such as plot, summary, logLik, coef, etc., provide means to assess the qual-
ity of a fit (i.e. MCMC convergence, consistence between ML and MCMC fits) as well as
various inferred properties, such as high posterior density (HPD) intervals (more details in
the package user guide).

5.d.1 Model inference

We implement maximum likelihood and Bayesian inference of the POUMM parameters, Θ,
using the L-BFGS-R convex optimization algorithm (R-function optim) and a variant of the
Random Walk Metropolis (RWM) Markov Chain Monte Carlo (MCMC) sampling (Metropolis
et al., 1953). This combined inference capitalizes on two practical ideas:

• A MCMC has higher chance to converge to the target posterior distribution faster if it
has been started from a previously estimated MLE;

• If an MCMC encounters a point in the parameter space that has higher likelihood than
a previously inferred MLE, running maximum likelihood optimization from that point
is more likely to find the global likelihood optimum.

An important step in RWM is the choice of a proposal (jump) distribution shape matrix
used as a scaling factor on each next proposal in the Metropolis algorithm. Choosing the
shape matrix with respect to the scale and the correlation structure of the parameter space
minimizes the number of iterations needed for MCMC convergence and mixing. Thus, nu-
merous variants of the RWM have been proposed, performing "on-the-fly" adaptation of the
shape matrix based on what has been "learned" about the parameter space from the past
RWM iterations (Haario, Saksman, and Tamminen, 2001; Vihola, 2012). Of these variants, we
chose the adaptive Metropolis sampling with coerced acceptance rate, because it is shown
to be robust with respect to the posterior distribution, it performs a relatively cheap adapta-
tion of the shape (Vihola, 2012) and it has an implementation in the R within the package
adaptMCMC (Scheidegger, 2012).

The fitting of the POUMM model was implemented as a pipeline including the following
steps:

1. Perform three MLE searches using the R-function optim and the L-BFGS-B method
(Byrd et al., 1995), starting from three randomly chosen points in parameter space;

2. Run three MCMC chains as follows: (i) a chain sampling from the prior distribution;
(ii) a chain sampling from the posterior distribution and started from the MLE found in
step 1; (iii) a chain sampling from the posterior distribution and started from a random
point in parameters space.

3. If the parameter tuple of highest likelihood sampled in the MCMC has a likelihood
higher than the MLE found in step 1, repeat the MLE search starting from that param-
eter tuple;

By running MLE first and starting an MCMC chain from the MLE candidate, we increase
the chance that at least one of the MCMCs would converge faster to the posterior distribu-
tion. By comparing the posterior samples from two MCMCs initiated from different starting
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points, it can be assessed whether the MCMCs have converged to the true posterior. We
do this quantitatively by the use of the Gelman-Rubin convergence diagnostic (Brooks and
Gelman, 1998) implemented in the R-package coda (Plummer et al., 2006). Values of the
Gelman-Rubin (G.R.) statistic significantly different from 1 indicate that at least one of the
two posterior samples deviates significantly from the true posterior distribution. By visual
comparison of posterior density with prior desnity plots, it is possible to assess whether the
data contains information differring from the prior knowledge for a given parameter. In step
3, we capitalize on the chance that the MCMCs have explored a wider region of the parameter
space than the likelihood optimization.

5.d.2 Technical correctness

To validate the correctness of the Bayesian POUMM implmentation, we used the method of
posterior quantiles (Cook, Gelman, and Rubin, 2006). In this method, the idea is to generate
samples from the posterior quantile distributions of selected model parameters (or functions
thereof) by means of numerous “replications” of simulation followed by Bayesian parameter
inference. In each replication, “true” values of the model parameters are drawn from a fixed
prior distribution and trait-data is simulated under the model specified by these parameter
values. We perform these simulations on a fixed tree of size N = 4000. Then, the to-be-tested
software is used to produce a posterior distribution of parameters based on the simulated
trait-data. Next, the posterior quantiles of the “true” parameter values (or functions thereof)
are calculated from the corresponding posterior samples generated by the to-be-tested soft-
ware. By running multiple independent replications on a fixed prior, it is possible to generate
large samples from the posterior quantile distributions of the individual model parameters,
as well as any derived quantities. Assuming correctness of the simulations, any statistically
significant deviation from uniformity of these posterior quantile samples indicates an error
in the to-be-tested software (Cook, Gelman, and Rubin, 2006).

Two phylogenetic trees were used for the simulations:

• Ultrametric (BD, N = 4000) - an ultrametric birth-death tree of 4000 tips generated
using the TreeSim R-package (Boskova, Bonhoeffer, and Stadler, 2014; Stadler et al.,
2013) (function call: sim.bd.taxa(4000, lambda = 2, mu = 1, frac = 1, complete =

FALSE));
• Non-ultrametric (BD, N = 4000) - a non-ultrametric birth-death tree of 4000 tips gener-

ated using the TreeSim R-package (Boskova, Bonhoeffer, and Stadler, 2014; Stadler et al.,
2013) (function call: sim.bdsky.stt(4000, lambdasky = 2, deathsky = 1, timesky=0)).

Simulation scenarios of 2000 replications were run using the prior distribution < gM, α, θ, σ, σe >∼
N (5, 25)×Exp(0.1)×U (2, 8)×Exp(0.4)×Exp(1). The goal of using this prior was to explore
a large enough subspace of the POUMM parameter space, while keeping MCMC conver-
gence and mixing within reasonable time (runtime up to 30 minutes for two MCMCs of 106

adaptive Metropolis iterations at target acceptance rate of 1%). From the above prior, we drew
a sample of n = 2000 parameter tuples, {Θ(1), ..., Θ(n)}, which were used as replication seeds.
For a given Θ(i), we simulate genotypic values g(i)(T , Θ(i)) according to an OU-branching
process with initial value g(i)M and parameters α(i), θ(i), σ(i). Then, we add random white noise

(∼ N (0, σ2
e
(i)
)) to the genotypic values at the tips, to obtain the final trait values z(i).

For the two simulated trees, we executed a total of 2 × 2000 = 4000 replications. The
resulting posterior quantile distributions for the each tree are shown on Fig. S2. We notice
that the posterior quantiles for all relevant parameters are uniformly distributed. This is
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Figure S2: Posterior quantiles from simulations on a ultrametric and a non-ultrametric tree (N = 4000).
The number n at the top of each histogram denotes the number of replications out of
2000 which reached acceptable MCMC convergence and mixing after one million iterations.
Uniformity was confirmed using a Kolmogorov-Smirnov test which was insignificant for
all parameters (P-value above 0.1).

confirmed visually by the corresponding histograms (fig. S2), as well as statistically, by a
non-significant p-value from a Kolmogorov-Smirnov uniformity test at the 0.01 level. This
observation validates the technical correctness of the software.

5.e supplementary results from the performance benchmarks
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Figure S3: Likelihood calculation times for the univariate POUMM implementation (package POUMM)
on Euler cluster (a single shared memory node with Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50GHz running 24 physical cores). Both, the x−axis denoting the number of cores, and the
y−axis denoting the calculation time in milliseconds are on the linear scale. Horizontally,
the panels correspond to the different tree topologies, see also fig. 5.2. Vertically, the panels
correspond to the different tree-sizes. For visualization purpose, only the times for the
serial postorder and the fastest parallel algorithm (parallel range-based) are shown. The
times for the parallel queue-based implementation were significantly higher.
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Figure S4: Likelihood calculation times for the multivariate POUMM implementation (package
PCMBaseCpp) with 1 trait on Euler cluster (a single shared memory node with Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz running 24 physical cores). Both, the x−axis denoting
the number of cores, and the y−axis denoting the calculation time in milliseconds are on
the linear scale. Horizontally, the panels correspond to the different tree topologies, see
also fig. 5.2. Vertically, the panels correspond to the different tree-sizes.
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Figure S5: Likelihood calculation times for the multivariate POUMM implementation (PCMBaseCpp)
with 4 traits on Euler cluster (a single shared memory node with Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz running 24 physical cores). Both, the x−axis denoting the number
of cores, and the y−axis denoting the calculation time in milliseconds are on the linear
scale. Horizontally, the panels correspond to the different tree topologies, see also fig. 5.2.
Vertically, the panels correspond to the different tree-sizes.
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Figure S6: Likelihood calculation times for the multivariate POUMM implementation (PCMBaseCpp)
with 8 traits on Euler cluster (a single shared memory node with Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz running 24 physical cores). Both, the x−axis denoting the number
of cores, and the y−axis denoting the calculation time in milliseconds are on the linear
scale. Horizontally, the panels correspond to the different tree topologies, see also fig. 5.2.
Vertically, the panels correspond to the different tree-sizes.
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Figure S7: Likelihood calculation times for the multivariate POUMM implementation (PCMBaseCpp)
with 16 traits on Euler cluster (a single shared memory node with Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz running 24 physical cores). Both, the x−axis denoting the number
of cores, and the y−axis denoting the calculation time in milliseconds are on the linear
scale. Horizontally, the panels correspond to the different tree topologies, see also fig. 5.2.
Vertically, the panels correspond to the different tree-sizes.
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Figure S8: Parallel speed-up for the multivariate POUMM implementation (PCMBaseCpp) with 1 trait
on Euler cluster. The grey and red lines denote, the expected speed-up at 100% and 50%
parallel efficiency, respectively. Horizontally, the panels correspond to the different tree
topologies. Vertically, the panels correspond to the different tree-sizes.
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Figure S9: Parallel speed-up for the multivariate POUMM implementation (PCMBaseCpp) with 4 traits
on Euler cluster. The grey and red lines denote, the expected speed-up at 100% and 50%
parallel efficiency, respectively. Horizontally, the panels correspond to the different tree
topologies. Vertically, the panels correspond to the different tree-sizes.
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Figure S10: Parallel speed-up for the multivariate POUMM implementation (PCMBaseCpp) with 8 traits
on Euler cluster. The grey and red lines denote, the expected speed-up at 100% and 50%
parallel efficiency, respectively. Horizontally, the panels correspond to the different tree
topologies. Vertically, the panels correspond to the different tree-sizes.
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5.f combined speed-up from parallel likelihood calculation and adap-
tive metropolis sampling

We have used the POUMM package to estimate the heritability of set-point viral load in a
data-set of 8,483 HIV patients. While the results of this analysis have been reported elsewhere
(Mitov and Stadler, 2018), here, we briefly report the times and the quality statistics for the
MCMC inference of the model with and without adaptive Metropolis sampling.

First, we ran the classical RWM Metropolis sampler with a default identity shape matrix
for two MCMCs of ten million iterations on the above-mentioned hardware (2.3GHz Intel(R)
Core i7 processor with 4 cores), using the fastest (range-based) parallel likelihood calculation.
The total time for the two MCMCs was 3:18 hours. The run resulted in poor mixing and
very low effective posterior sample size for most of the inferred parameters of the model (fig.
S11a,b). The Gelman-Rubin statistic was greater than 1.1 for all parameters and the effective
sample size was below 400 for all parameters, falling below 50 for α and σ.

Next, we ran the adaptive Metropolis sampler for two MCMCs of one million iterations.
Adaptations has been enabled only for the first 100,000 iterations in each MCMC. The total
runtime was 25 minutes. The two chains mixed very well and the effective sample size for
all parameters exceeded 1200 (fig. S11c,d). The difference |G.R.− 1| was below 0.01 for all
parameters, proving that the MCMCs have converged to the same distribution, which is very
likely the true posterior distribution for the model parameters.
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Figure S11: Sample trace- and density plots from a POUMM fit to a tree and virulence data 8483 HIV
patients (Mitov and Stadler, 2018) a,b: no adaptation of the proposal shape matrix (ten
million iterations); c,d: on-the-fly adaptation of the proposal shape matrix from the first
100,000 out of one million iterations. The colors correspond to the different chains.
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Manuscript to be submitted for peer review as

Venelin Mitov, Krzysztof Bartoszek, Georgios Asimomitis and Tanja Stadler (2018). Fast like-
lihood evaluation for multivariate phylogenetic comparative methods: the PCMBase R pack-
age Journal of Theoretical Biology.

This article represents the generalization of the quadratic polynomial representation for
a single trait POUMM model discussed in Chapter 5 to multiple trait Gaussian phyloge-
netic models. The idea for this work came from my personal communication with Prof.
Krzysztof Bartoszek. Krzysztof suggested that the integration over the unobserved internal
nodes (Chapter 5, Appendix) could be generalized to multivariate Ornstein-Uhlenbeck pro-
cesses. Later, we realized that the same holds for a much larger family, which we call GLInv.
This paper describes the theoretical development and the design of an R-package called
PCMBase. During the development of the PCMBase package I was assisted by Georgios Asi-
momitis – a master degree student in Computational Biology and Bioinformatics at ETH
Zurich who did a 2-week lab rotation in the cEvo group. The PCMBase R-package will be
the workhorse for the likelihood calculation of the mixed Gaussian phylogenetic models
described in the next Chapter 7.
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abstract

We introduce an ‘R’ package, ‘PCMBase’, to rapidly calculate the likelihood for multivariate
phylogenetic comparative methods. The package is not specific to particular models but
offers the user the functionality to very easily implement a wide range of models where the
transition along a branch is multivariate normal. We demonstrate the package’s possibilities
on the now standard, multitrait Ornstein–Uhlenbeck process as well as the novel multivariate
punctuated equilibrium model. The package can handle trees of any type (e.g. ultrametric,
nonultrametric, polytomies, e.t.c.), as well as complex cases of missing measurements or non-
existing traits for some of the species in the tree.

6.1 introduction

Since Felsenstein (1985)’s work describing the independent contrasts algorithm, phylogenetic
comparative methods (PCMs) have steadily been generalized with respect to available mod-
els and implementations of them. Following Felsenstein (1988)’s suggestion, Hansen (1997)
described the Ornstein–Uhlenbeck (OU) process in the PCM setting. This led to the imple-
mentation of OU models in various packages such as ‘ouch’ (Butler and King, 2004) or ‘geiger’
(Harmon et al., 2008) to name a few, making it a standard model in the community along-
side the Brownian motion (BM) process popularized in the community by Felsenstein (1985)
but see also Edwards (1970) and Lande (1976). For species being characterized by multiple
traits, the multivariate OU processes was introduced by ‘R’ packages such as ‘ouch’, ‘slouch’
(Hansen, Pienaar, and Orzack, 2008), ‘mvSLOUCH’ (Bartoszek et al., 2012), ‘mvMORPH’
(Clavel, Escarguel, and Merceron, 2015), ‘Rphylopars’ (Goolsby, Bruggeman, and Ané, 2016),
again, to name a few. At the core of these methods, the likelihood of the model parameters
and tree for given trait data is evaluated, meaning the probability density of the tip trait
values given the parameters and tree is calculated.

From a statistical point of view, the development of phylogenetic comparative methods
goes in two directions. The first direction is development of model classes beyond simple
stochastic processes, such as BM and OU, and the second direction is the development of
efficient likelihood evaluation methods. Considering the first direction, we briefly mention
three recent proposals. Manceau, Lambert, and Morlon (2016) show (with implementation in
‘RPANDA’) that if one models the suite of traits by a linear stochastic differential equation
(SDE, see the representation by Eq. (1) of Manceau, Lambert, and Morlon, 2016) whose drift
matrix (“deterministic part” of the SDE) is piecewise constant with respect to the phylogeny,
and diffusion matrix (“random part”, sometimes referred to as “random drift part” in bio-
logical literature) does not depend on the trait, then the tip measurements are multivariate
normal. The tip measurements’ mean vector and covariance matrix can be found by integrat-
ing (backwards along the tree) an appropriate collection of ordinary differential equations
(ODEs). Duchen et al. (2017) and Landis, Schraiber, and Liang (2012) went beyond the SDE
world into Lévy process models. These are highly relevant from a biological point of view
as they allow for jumps in the trait at random time instances. Hence, they hold promise
for attacking the longstanding question of whether “evolution is gradual or punctuated?”.
Both approaches consider the transition densities, meaning the change of a trait between the
start and the end of a branch, when quantifying trait evolution along a phylogeny. The third
approach is to model the evolution of the traits’ density in time with a partial differential
equation (PDE Blomberg, 2017; Boucher et al., 2018). E.g. in the simplest standard Wiener
process case the PDEs are ∂

∂t ft(x) = 1
2

∂2

∂x2 ft(x) with boundary condition f0(x) = δ0(x), i.e.



6.1 introduction 129

Dirac δ at 0. This approach is convenient as it is next to impossible to analytically express the
transition density.

The other direction is the development of efficient likelihood evaluation methods. Com-
monly, in PCMs, the model classes have the property that the joint distribution of the tip
measurements is multivariate normal. Hence, there is a closed form for the likelihood—the
multivariate normal density function, i.e. an algebraic expression in terms of the traits’ mean
vector and the traits’ variance-covariance matrix (V). Even though it is possible to obtain a
conceptually simple equation, actually calculating the value of the likelihood is a computa-
tional challenge. If one has multiple correlated trait measurements per species, then the first
step can be extremely involved, V can have a very complicated formula (cf. Eqs (A.1, B.3, B.7)
of Bartoszek et al., 2012). As Freckleton (2012) points out “First, the matrix has to be gener-
ated in the first place. This requires allocating enough memory to hold all of the entries of V
and then initiating one traversal (i.e. successively visiting all the nodes) of the phylogeny per
pair of species sharing an ancestor to measure the shared path lengths. Second V has to be
inverted at one point in the analysis.”.

Hence, effort has been invested into reducing the memory and time complexity of the
likelihood evaluation process. Inspired by Felsenstein (1973)’s approach, Freckleton (2012)
proposed a linear way to obtain the likelihood for traits evolving as a Brownian motion.
Freckleton (2012), further indicates that non–Brownian models can be quickly evaluated if
one appropriately transforms the phylogeny. Then, Ho and Ané (2014a) proposed a general
method that takes advantage of the so–called 3–point structure of the Brownian motion’s
between–species–between–traits variance–covariance matrix and obtain the likelihood in lin-
ear (w.r.t. the number of tips of the phylogeny) time, without having to construct in quadratic
time the matrix V. Similarly, calculating the likelihood for non–Brownian models (like the
univariate Ornstein–Uhlenbeck process) can be done in linear time, as long as their V sat-
isfies a generalized 3–point structure. Briefly, a covariance matrix satisfies the generalized
3–point structure if there exist diagonal matrices D1 and D2 such that D1VD2 satisfies the
3–point structure Goolsby, Bruggeman, and Ané (2016) derives such a transformation to find
the likelihood for traits under multivariate Ornstein–Uhlenbeck evolution in linear time. But
in their implementation, only ultrametric trees and symmetric–positive–definite drift matri-
ces are supported at the moment. For non–Gaussian models, a quasi–likelihood is defined
and again the same approach (as long as the generalized 3–point structure holds) can be
used (Ho and Ané, 2014a).

The speed–up for the Brownian motion’s 3–point structure (or generalized 3-point struc-
ture) is based on the fact that the between–species–between–traits variance–covariance matrix
has a nested structure. Therefore, appropriate linear algebra allows for rapid calculation of
det(V) and quadratic forms like ~xV−1~y without the need to do the inversion V−1. (improved
version of the Coppersmith–Winograd algorithm Le Gall, 2014).

Even though linear–time likelihood evaluation based on the 3–point structure is mathe-
matically elegant, it is, due to the necessity of finding an appropriate transformation for non–
Brownian motion, intrinsically complicated and may seem daunting for a non–algebraically
oriented user or developer. FitzJohn (2012) indicated a probabilistically motivated way of
quickly finding the likelihood (with implementation in the ‘Diversitree’ ‘R’ package). He
noticed (in the Supporting Information), same as Pybus et al. (2012), that one can traverse
the tree and successively integrate out the internal nodes. FitzJohn (2012)’s description was
focused around the BM and univariate OU processes on ultrametric trees. Furthermore,
FitzJohn (2012) writes that he proved correctness of his method for a three tip phylogeny
and then for larger trees checked numerically.
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The presence of two different approaches, namely the 3–point structure method and the
tree traversal method, to quickly calculating the likelihood combined with a number of inde-
pendent implementations, each with some given set of conditions, can easily cause confusion.
In fact, it seems that this led Slater (2014) to write in his Correction (due to “. . . errors arose
from use of branch length rescaling under the Ornstein–Uhlenbeck process, which I here
show to be inappropriate for non–ultrametric trees”), that “. . ., there is little, if any documen-
tation in the literature or elsewhere highlighting that one of these approaches can be used
while another cannot.”

In this paper we attempt to assess the difficulties highlighted in the previous paragraph
by proposing a fast method to obtain the likelihood which integrates over the internal node
values. Our approach is appropriate for a large class of models, namely for all models where
conditional on the ancestral trait, the descendant trait is normally distributed (however, we
indicate in the Discussion that substantial relaxations of this are possible), the descendant’s
expectation depends linearly on the ancestor, and the variance does not depend on the ances-
tral value. In other words, we require that all transition densities along branches are Gaussian.
From a mathematical point of view, we provide an inductive proof of FitzJohn (2012)’s claim
of method correctness for multiple traits and all kinds of trees. Pybus et al. (2012) point out
that for such a method to work, it is needed “to keep track of partial” means and precisions.
Here, we propose a very general, computationally effective, and developer friendly way of
doing this by recursively updating the polynomial representation of the multivariate normal
density function. In order to use our approach for some new model, one has to be able to
calculate the variance of the transition along the branch, the shift in the mean along a branch,
and the linear dependency (i.e. a matrix) on the ancestral state. Thus, in our probabilistic ap-
proach, one needs to understand only the dynamics of a single branch (lineage), something
that is usually present at the model formulation stage. For OU based models, these quanti-
ties can be analytically calculated and we provide an implementation. For other models, a
developer will have to do the calculations themselves, but this should be significantly less
involved than finding the transformation for the 3–point structure. In fact, for SDE based
models, Manceau, Lambert, and Morlon (2016) provide a general ODE method (Eqs. S2 and
S3) to obtain the conditional mean and variance. Furthermore, our method can naturally han-
dle measurement error (intra–species variability), missing data, and punctuated components
(jumps), and allows for changes in parameters at arbitrary points along the tree. It is further
appropriate for non–ultrametric, binary and multifurcating trees. All of such specifications
can be provided by the user. In no case is any tree transformation required.

As our method can handle any Gaussian transition, it encompasses a number of contem-
porary frameworks. In particular all OU type models (e.g. ‘ouch’, ‘slouch’, ‘mvSLOUCH’,
‘mvMORPH’) are covered by it. The ‘RPANDA’ SDE framework (without interactions be-
tween lineages) is also covered as are current punctuated equilibrium models (OU along a
branch with a normal jump Bartoszek, 2014; Bokma, 2002). To the best of our knowledge, our
implementation handles the widest class of BM– and OU–based models on the widest set of
phylogenetic trees, including non–ultrametric and non–binary trees.

It is important to stress here one point about the presented methodology and accompany-
ing package. Our aim is not to provide a complete inference framework. Rather we provide
an efficient way to evaluate the likelihood for a phylogenetic comparative data set given a
user–defined model. The user can then on top of our package optimize over the parameter
space to find the maximum likelihood estimates or perform a Bayesian analysis. In “Auto-
matic Generation of Evolutionary Hypotheses using Mixed Gaussian Phylogenetic Models,”
we use the framework presented here to quantify the evolution of brain-body mass allometry
in mammals.
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The rest of the paper is organized as follows. In Section 6.2, we describe in detail our fast
computational framework for phylogenetic comparative methods. In Section 6.3 we present
the ‘PCMBase’ ‘R’–package. Then, in Section 6.4 we describe how one can handle issues
such as missing values, measurement error, punctuated components, trees with polytomies,
as well as sequentially sampled data (such as fossil data) leading to non–ultrametric trees.
Next, in Section 6.5, we discuss the standard Ornstein–Uhlenbeck setup and describe ex-
amples of model classes that are already provided within our package. Two widely used
models—the multivariate Brownian motion and multivariate Ornstein–Uhlenbeck processes
and a novel model— a multivariate Ornstein–Uhlenbeck model with jumps are provided. It
should be noted that even though we call the BM and OU standard PCM models, our imple-
mentation goes beyond what can be usually found in implementations: First, we allow for
non-ultrametric trees [ok to put it here?]. Second, the only assumption that we make on the
drift matrix (i.e. “deterministic part” of the SDE) is that it has to be eigendecomposable. This
is in contrast to the assumption of this matrix being not only eigendecomposable but also
non–singular (e.g. ‘Rphylopars’, ‘mvMORPH’, ‘mvSLOUCH’—but some exceptions to this
are permitted). In section Section 6.6 we report a technical validation test of the likelihood
calculations.

6.2 fast phylogenetic computational framework

6.2.1 Phylogenetic notation

We assume that we are given a rooted phylogenetic tree T representing the ancestral rela-
tionship between N species associated with the tips of the tree (fig. 6.1). We denote the tips
of the tree by the numbers 1, . . . , N, the internal nodes by the numbers N + 1, . . . , M− 1 and
the root-node by 0. For any internal node j, we denote by Desc(j) the set of its direct descen-
dants. We denote by Tj the subtree rooted at node j. We denote by tj the known length of the
branch in the tree leading to any tip or internal node j. By convention, we assume that time
increases in the direction from the root to the tips of the tree, and tj are positive scalars.

The object of all phylogenetic models discussed here will be a suite of k quantitative (real–
valued) traits characterizing the N species. Associated with each tip, i, there is a real k–vector,
~xi, of measured values for the k traits. For some species, some trait measurements can be
missing, reflecting two possible cases:

• the trait exists but was not measured for that species, denoted as ‘NA’ (Not Available);

• the trait does not exist for that species denoted as ‘NaN’ (Not a Number) (fig. 6.1).

We introduce algebraic notation that will hold for the rest of the paper. Scalars are denoted
by lower case letters, e.g. f , vectors are indicated by the arrow notation, e.g. ~θ, while matrices
are denoted as upper case bold letters, e.g. H. An exception to this is Xj, meaning the set of
measurements at the tips descending from an internal node j of the tree.

6.2.2 Phylogenetic models of continuous trait evolution

We assume that the trait values measured at the tips of the tree result from a continuous
state–space Markovian process evolving on top of the branching pattern in the tree. By this
we mean that along any given branch we have a trajectory following the law of the process.



132 fast likelihood evaluation for multivariate phylogenetic comparative methods

Figure 6.1: A phylogenetic tree with observations at the tips. Numbered circles in black indicate the
tips with observed trait vectors ~x1, . . . ,~xN=5. Missing measurements are denoted as ‘NA’
(Not Available), while non-existing traits are denoted as ‘NaN’ (Not a Number). Numbered
circles in red indicate the root, 0, and the internal nodes 6, . . . , 9, for which the trait vectors
are unknown. The vectors, ~ki, denote the active coordinates for every node - for a tip-
node these are all observed (neither ‘NA’ nor ‘NaN’) coordinates; for an internal node, these
are all the coordinates denoting traits that exist (are not ‘NaN’) for at least one of the tips
descending from that node. The length of a branch leading to a tip or an internal node is
known and denoted by ti, i = 1, . . . , 9. The change in branch color from black to orange
at the internal node 8 denotes the change to a different evolutionary regime. It is assumed
that such a regime change occurs simultaneously for all traits.

Then, at speciation, the process “splits” into two processes. Both processes inherit the last
value of their parent process. After the branching points, there is no interaction between the
processes. This entails that all the dependencies between the values at the tips come from the
time between the origin of the tree and the most recent common ancestor for each pair of
species. Exactly how this shared time of evolution is translated into a dependency depends on
the assumed process. A widely used example of such trait process is the Ornstein–Uhlenbeck
process illustrated on Fig. 6.2.

Such stochastic processes are used as models of continuous trait evolution at the macro-
evolutionary time scale, that is, when the time-units are in the order of hundreds to thou-
sands of generations. Previous works have studied the theoretical mapping of such processes
to micro-evolutionary forces acting at the time-scale of single generations, e.g. random ge-
netic drift and selection for reproduction (Hansen and Martins, 1996; Lande, 1976). Furhter
in the text, we use the term “(trait evolutionary) model” to denote such kind of stochastic
processes. We now turn to describing a family of models for which we will then provide an
efficient way to calculate the likelihood of their parameters given the tree and the trait data
observed at its tips.
6.2.3 The GLInv family of models

The following definition specifies all requirements needed for a trait evolutionary model to
be integrated within the fast computational framework:

Definition 1 (The GLInv family). We say that a trait evolutionary model belongs to the GLInv family
if it satisfies the following

1. after branching the traits evolve independently in the two descending lineages,
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Figure 6.2: Simulation of a bivariate OU process on top of a pure birth tree with 30 tips. The two traits
are displayed on separate panels. The tree was simulated using the ‘TreeSim’ package
(Stadler, 2009, 2011), its height is 3.201. The bivariate OU process was simulated using
‘mvSLOUCH’ (Bartoszek et al., 2012) with parameters (matrices are represented by their
rows) H = {{1, 0.25}, {0, 2}}, Σx = {{0.5, 0.25}, {0, 0.5}}, ~θ = (1,−1)T and ~x0 = (0, 0)T .

2. the distribution of the trait vector at time t, ~x(t), conditional on the trait vector at time s < t,
~x(s), is Gaussian with the mean and variance satisfying

(2.a) E [~x(t)|~x(s)] = ~ω + Φ~x(s)
(the expectation is a linearly function of the ancestral trait),

(2.b) Var [~x(t)|~x(s)] = V
(variance is invariant with respect to the ancestral trait),

for some vector ~ω and matrices Φ, V which may depend on s and t but do not depend on ~x(s).

Later, in section 6.5, we show that the GLInv family contains many well-known contem-
porary models such as BM, multivariate OU (where all traits are OU or some are BMs),
BM or OU with jumps (normally distributed). Now we derive an important property of the
GLInv family, namely, the equivalence between condition (2) in dfn. 1 and a mathematically
convenient quadratic polynomial representation of the model transition density.

Theorem 2. Let i be a tip or internal node and j be its parent node in T. Let ki and k j be positive
integers, and ~xi ∈ Rki , ~xj ∈ Rk j be the trait-vectors at nodes i and j. Assume that ~xj is given and ~xi

is a random vector with non-zero support on the whole of Rki . Then, the conditional distribution of
~xi given ~xj is a multivariate normal distribution satisfying the condition (2) in dfn. 1 iff there exists
a symmetric negative–definite matrix Ai ∈ Rki×ki and components~bi ∈ Rki , Ci ∈ Rk j×k j , ~di ∈ Rk j ,
Ei ∈ Rk j×ki , fi ∈ R, all of which independent of ~xj and satisfying the equation

pd f (~xi|~xj) = exp(~xT
i Ai~xi +~xT

i
~bi +~xT

j Ci~xj +~xT
j
~di +~xT

j Ei~xi + fi), (6.1)
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Furthermore, the components of Eq. (6.1) must satisfy the constraints

Ci = EiA−T
i ET

i ,
~di = 2EiA−1

i
~bi,

fi = 4bT
i bi − ki

2 log π − 1
2 log |Ai|.

(6.2)

Proof.
(=⇒)
We denote the elements ~ω, Φ and V (dfn. 1) specific for node i, by ~ωi, Φi and Vi. Substituting
~ωi + Φi~xj and Vi for the mean and variance in the formula for the multivariate Gaussian pdf,
we obtain:

pd f (~xi|~xj) = exp
(
−1

2
(
~xi −

(
~ωi + Φi~xj

))T V−1
i

(
~xi −

(
~ωi + Φi~xj

))
− ki

2
log (2π)− 1

2
log |Vi|

)

(6.3)

Equation (6.3) can be rewritten as

exp
(
− 1

2~x
T
i V−1

i ~xi +~xT
i V−1

i ~ωi +~xT
j ΦT

i V−1
i ~xi − 1

2~ω
T
i V−1

i ~ωi −~xT
j ΦT

i V−1
i ~ωi − 1

2~x
T
j ΦT

i V−1
i Φi~xj

− ki
2 log (2π)− 1

2 log |Vi|
)

.

(6.4)

We can see the correspondence with the parametrization of Eq. (6.1)

Ai = − 1
2 V−1

i ∈ Rki×ki

~bi = V−1
i ~ωi ∈ Rki

Ci = − 1
2 ΦT

i V−1
i Φi ∈ Rk j×k j

~di = −ΦT
i V−1

i ~ωi ∈ Rk j

Ei = ΦT
i V−1

i ∈ Rk j×ki

fi = − 1
2~ω

T
i V−1

i ~ωi − ki
2 log (2π)− 1

2 log |Vi| ∈ R.

(6.5)

We notice that V−1
i is symmetric positive–definite, as the inverse of Vi, which is symmetric

positive–definite by definition. This implies that the term Ai is symmetric negative–definite.
Further, by dfn. 1, ~ωi, Φi and Vi are independent of ~xj. Hence, Ai, ~bi, Ci, ~di, Ei, fi are also
independent with respect to ~xj. Validating Eq. (6.2) is a matter of simple algebraic conversion.
(⇐=)
We rearrange the terms on the right-hand side of Eq. (6.1) as follows

pd f (~xi|~xj) = exp
(
~xT

i Ai~xi − 2~xT
i Ai

(
(− 1

2 A−1
i )

(
~bi + ET

i ~xj

))
+
(
~xT

j Ci~xj +~xT
j
~di + fi

))

= exp
((

~xi +
1
2 A−1

i

(
~bi + ET

i ~xj

))T
Ai

(
~xi +

1
2 A−1

i

(
~bi + ET

i ~xj

))
− 1

4

(
~bi + ET

i ~xj

)T
A−1

i

(
~bi + ET

i ~xj

)

+
(
~xT

j Ci~xj +~xT
j
~di + fi

))
.
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As the above is by definition a density on Rki , we have

1 =
∫

Rki

exp
(
− 1

2

(
~xi +

1
2 A−1

i

(
~bi + ET

i ~xj

))T
(−2Ai)

(
~xi +

1
2 A−1

i

(
~bi + ET

i ~xj

)))
d~xi

· exp
(
− 1

4

(
~bi + ET

i ~xj

)T
A−1

i

(
~bi + ET

i ~xj

)
+
(
~xT

j Ci~xj +~xT
j
~di + fi

))

= exp
(

ki
2 log(2π) + 1

2 log |(−2)Ai|
)
× exp

(
− 1

4

(
~bi + ET

i ~xj

)T
A−1

i

(
~bi + ET

i ~xj

)
+
(
~xT

j Ci~xj +~xT
j
~di + fi

))

= exp
(
~xT

j

(
Ci − 1

4 EiA−1
i ET

i

)
~xj +~xT

j

(
~di − 1

2 EiA−1
i
~bi

)
+ fi +

ki
2 log(2π) + 1

2 log |(−2)Ai| − 1
4
~bT

i A−1
i
~bi

)
.

(6.6)

By definition, Ai,~bi, Ci, ~di, Ei, fi are independent with respect to ~xj. Therefore, eq. 6.6 has to
hold for all ~xj. This implies Ci =

1
4 EiA−1

i ET
i , ~di =

1
2 EiA−1

i
~bi and

fi = − ki
2 log(2π)− 1

2 log |(−2)Ai|+ 1
4
~bT

i A−1
i
~bi. With that, we obtained the constraints of Eq.

(6.2). Next, we define Vi := (− 1
2 )A

−1
i , ~ωi := (− 1

2 )A
−1
i
~bi and Φi := (− 1

2 )A
−1
i ET

i . Since Ai is
symmetric negative–definite, Vi is symmetric positive–definite. Combining the above three
definitions with Eq. (6.2) and expressing Ai, ~bi, Ci, ~di, Ei, fi in terms of ~ωi, Φi and Vi, we
obtain again eq. (6.5). Then, we can follow the equivalences in backward direction (eqs.
6.5→6.4→6.3) to prove that the pdf defined in eq. 6.1 is equivalent to the Gaussian pdf
defined in terms of ~ωi, Φi and Vi, eq. 6.3.

6.2.4 Analytical integration over the internal nodes

The representation of Eq. (6.1) allows for linear (in terms of tips) calculation of the likelihood
over a given phylogeny. This follows from the next theorem.

Theorem 3. With the representation of Eq. (6.1), for the root or an internal node j, there exists a
k j × k j matrix Lj, a k j–vector ~mj and a scalar rj, such that the likelihood for Xj conditioned on
~xj ∈ Rk j and Tj (the subtree with node j as its root) is expressed as:

pd f (Xj|~xj, Tj) = exp
(
~xT

j Lj~xj +~xT
j ~mj + rj

)
. (6.7)

The parameters Lj, ~mj, rj are functions of the model parameters Θ, the observed data Xj, and the tree
Tj both in terms of topology and branch lengths, namely, equations 6.10, 6.11, and 6.12.

Proof. We consider the factorization of the conditional likelihood at any internal or root node
j. Splitting Desc(j), i.e. the set of nodes descending from node j, into tips and non–tips,
denoted as Desc(j) ∩ {1, ..., N} and Desc(j) \ {1, ..., N}, we can write:

pd f (Xj|~xj, Tj) =


 ∏

i∈Desc(j)∩{1,...,N}
pd f (~xi|~xj, ti)


×


 ∏

i∈Desc(j)\{1,...,N}

∫

Rk
j

pd f (~xi|~xj, ti)× pd f (Xi|~xi, Ti)d~xi


 .

(6.8)
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If all descendants of j are tips (e.g. nodes 6 and 7 on Fig. 6.1), then, according to Eq. (6.1)

pd f (Xj|~xj, Tj) = ∏
i∈Desc(j)

pd f (~xi|~xj, ti)

= exp

(
∑

i∈Desc(j)
~xT

i Ai~xi +~xT
i
~bi +~xT

j Ci~xj +~xT
j
~di +~xT

j Ei~xi + fi

)

= exp

(
~xT

j ( ∑
i∈Desc(j)

Ci)~xj +~xT
j ( ∑

i∈Desc(j)

~di + Ei~xi) + ∑
i∈Desc(j)

~xT
i Ai~xi +~xT

i
~bi + fi

)

(6.9)

Then, to obtain the representation from Eq. (6.7), we denote:

Lj = ∑
i∈Desc(j)

Ci

~mj = ∑
i∈Desc(j)

~di + Ei~xi

rj = ∑
i∈Desc(j)

~xT
i Ai~xi +~xT

i
~bi + fi

(6.10)

If not all of Desc(j) are tips, then, for the descendants which are tips, we define:

Ltips
j = ∑

i∈Desc(j)∩{1,...,N}
Ci

~mtips
j = ∑

i∈Desc(j)∩{1,...,N}
~di + Ei~xi

rtips
j = ∑

i∈Desc(j)∩{1,...,N}
~xT

i Ai~xi +~xT
i
~bi + fi

(6.11)

Following mathematical induction and the reasoning behind Eqs. (6.9) and (6.10), for each
i ∈ Desc(j) \ {1, ..., N} there exists a ki × ki matrix Li, a ki–vector ~mi and a scalar ri such that
pd f (Xi|~xi, Ti) = exp(~xT

i Li~xi +~xT
i ~mi + ri). To be more precise the initial step of the induction is

what we proved above, the quadratic polynomial representation for branches leading to tips.
Then, the induction hypothesis is that for an internal node j, the statement of the theorem
has been proven for all subtrees Ti, such that i ∈ Desc(j). Now in inductive step using Eq.
(6.1) and the induction hypothesis, we can write the integral in Eq. (6.8) as
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∫

Rki
pd f (~xi|~xj, ti)× pd f (Xi|~xi, Ti)d~xi

=
∫

Rki
exp

(
~xT

i Ai~xi +~xT
i
~bi +~xT

j Ci~xj +~xT
j
~di +~xT

j Ei~xi + fi +~xT
i Li~xi +~xT

i ~mi + ri

)
d~xi

= exp
(
~xT

j Ci~xj +~xT
j
~di + fi + ri

)
×
∫

Rki
exp

(
~xT

i (Ai + Li)~xi +~xT
i (~bi + ~mi + ET

i ~xj)
)

d~xi

F
= exp

(
~xT

j Ci~xj +~xT
j
~di + fi + ri

) (√
2π
)ki

(√
|(−2) (Ai + Li) |

)−1

× exp
(
−(1/4)

(
~bi + ~mi + ET

i ~xj

)T
(Ai + Li)

−1
(
~bi + ~mi + ET

i ~xj

))

= exp
(
~xT

j Ci~xj +~xT
j
~di + fi + ri

) (√
2π
)ki
(√
|(−2) (Ai + Li) |

)−1

× exp
(
−(1/4)

(
~bi + ~mi

)T
(Ai + Li)

−1
(
~bi + ~mi

)
− (1/2)~xT

j Ei (Ai + Li)
−1
(
~bi + ~mi

)

−(1/4)~xT
j Ei (Ai + Li)

−1 ET
i ~xj

)

= exp
(
~xT

j

(
Ci − (1/4)Ei (Ai + Li)

−1 ET
i

)
~xj +~xT

j

(
~di − (1/2)Ei (Ai + Li)

−1
(
~bi + ~mi

))

+ fi + ri + (ki/2) log(2π)− (1/2) log(|(−2) (Ai + Li) |)− (1/4)
(
~bi + ~mi

)T
(Ai + Li)

−1
(
~bi + ~mi

))

We can then see that for a non–tip node we can define

Lnon−tips
j = ∑

i∈Desc(j)\{1,...,N}

(
Ci − (1/4)Ei (Ai + Li)

−1 ET
i

)

~mnon−tips
j = ∑

i∈Desc(j)\{1,...,N}

(
~di − (1/2)Ei (Ai + Li)

−1
(
~bi + ~mi

))

rnon−tips
j = ∑

i∈Desc(j)\{1,...,N}
( fi + ri + (ki/2) log(2π)− (1/2) log(|(−2) (Ai + Li) |)

−(1/4)
(
~bi + ~mi

)T
(Ai + Li)

−1
(
~bi + ~mi

))
.

(6.12)

The representation of Lnon−tips
j , ~mnon−tips

j and rnon−tips
j in Eq. (6.12) immediately entails the

existence of the Lj, ~mj and rj elements in Eq. (6.7) for internal or root nodes j, hence we obtain
the claimed polynomial form in the inductive step and in consequence the theorem.

The inductive proof of Thm. 3 defines a pruning–wise procedure for calculating L0, ~m0
and r0 (we remind that 0 stands for the root of the tree). In order to calculate the likelihood
of the tree conditioned on ~x0, we use Thm 3 with j being the root node. In order to be able to
calculate the full likelihood, it now only remains to specify how to deal with the unknown
trait value at the root of the tree, ~x0, i.e. the ancestral state. This is an implementation detail
up to the user. Our implementation of the various models provided (sections 6.3 and 6.5)
with the ‘PCMbase’ package allow for maximizing the polynomial with respect to ~x0 or
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for treating it as a free parameter (like the elements of the parameter set Θ) that the user
provides.

6.3 the ‘pcmbase’ ‘r’ package

The ‘PCMBase’ package takes advantage of the fact that the quadratic polynomial represen-
tation of the likelihood function is valid for all models in the GLInv family. Hence, once the
analytical integration over the internal nodes has been implemented, the addition of a new
GLInv model to the framework boils down to defining the transition density in terms of the
functions ~ω, Φ and V (Def. 1). ‘PCMBase’ implements this idea, based on the concept of
inheritance between programming modules: Eqs. (6.5), (6.10), (6.11), (6.12)) are implemented
in a base module called “GaussianPCM”, which is abstract with respect to ~ω, Φ and V (Fig.
6.3). These functions are provided in inheriting modules definable for each GLInv model. This
hierarchical design is shown on Fig. 2.

6.3.1 Extending ‘PCMBase’

Extending the ‘PCMBase’ functionality can be achieved in two ways:

1. Adding a new model. It is possible to write a new module inheriting from the module
“GaussianPCM” and implementing its own version of the functions ~ω, Φ and V;

2. Adding a parametrization. It is possible to restrict or apply a transformation to some
of the parameters of an already defined model (Fig. 6.3).

6.3.2 Using the package

Figure 6.4 shows the runtime objects and use-cases currently implemented in the ‘PCMBase’
package. Once the modules for the models of interest have been implemented, the ‘PCMBase’
package can be used to:

• Creating a model object. The end-user function for creating a model object is ‘PCM()’. A
model object represents an S3 object, that is, a named list with members corresponding
to the model parameters, such as ‘H’, ‘Sigma_x’ and ‘Sigmae_x’, and a class attribute
equalling the model type, e.g. ‘BM’ or ‘OU’.

• Simulating the evolution of a set of continuous traits along a tree, according to a model.
The user level function for trait simulation is ‘PCMSim()’. Based on the S3 class of its
model argument ‘PCMSim()’ invokes an appropriate specification of the S3 generic func-
tion ‘PCMCond()’, which creates a random sampler from the trait distribution at the end
of a branch, given the model, the branch length and the trait values at the beginning of
the branch.

• Calculating the (log–)likelihood of a model, given a tree and trait values at its tips.
The user level function for likelihood calculation is ‘PCMLik()’. This function is imple-
mented in the “GaussianPCM” module and inherited by all of its daughter modules.
The calculation proceeds in four steps:

1. Initially, the model-specific functions ~ω, Φ and V are calculated based on the
model parameters Θ and the branch lengths ti (note that this operation does not
need the trait values to be present at any tip or internal node in the tree).
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OU
Implemented S3 generics from PCM: 
PCMParentClasses.BM() {...}
PCMDescribe.BM() {...}
PCMDescribeParameters.BM() {...}
PCMListParametrizations.BM() {...}

# Omega(), Phi() and V() functions for 
the OU model are defined here:
PCMCond.BM() {...} 

GaussianPCM
Abstract parent class for all Gaussian 
models

- Implemented S3 generics from PCM 
(note that PCMCond()  is not 
implemented here, but in daugher 
classes):

PCMParentClasses.GaussianPCM()  {...}
PCMMean.GaussianPCM()  {...}
PCMVar.GaussianPCM()  {...}

PCMSim.GaussianPCM()  {...}
PCMLik.GaussianPCM()  {...}

- S3 generics specific for Gaussian models 
(with default implementations)

PCMAbCdEf()
PCMAbCdEf.default()  { ... }
PCMLmr()
PCMLmr.default() { ... }

Constancy 
(optional) _Fixed

Main type Every parameter in a PCM must have one of these S3 classes:

ScalarParameter VectorParameter MatrixParameter

Scope/Omission Every parameter can be global for all regimes or local for a single 
regime. If not specified, local scope is assumed. In some special cases a parameter (e.g. 
Sigmae) can be omitted from a model.

_Global _Omitted

Transformation
(optional) _Transformable _CholeskiFactor _Schur

_Zeros_Ones _Identity

Other properties
(optional)

_AllEqual _ScalarDiagonal

_NonNegative

_Symmetric _UpperTriangular

_UpperTriangularWithDiagonal

_LowerTriangular

_LowerTriangularWithDiagonal

_WithNonNegativeDiagonal

PCMParam
Global and S3 generic functions for manipulating model parameters. The parameters in a PCM are 
named objects with a class attribute specifying the main type and optional properties (tags). 
S3 generic functions:

- Counting the number of actual numeric parameters (used, e.g. for calculating information scores, 
e.g. AIC)
PCMParamCount()

- Storing/loading a parameter to/from a numerical vector
PCMParamLoadOrStore()
PCMParamGetShortVector()

- Specifying parameter upper and lower limits
PCMParamLowerLimit()
PCMParamUpperLimit()

- Generating a random parameter
PCMParamRandomVecParams()

S3 classes, for which the above S3 generics are implemented:

PCM
Main interface for PCM objects. This  consists of global functions and S3 
generic methods specified for objects that inherit from the S3 class "PCM". 

- S3 methods for specification of new model types: a model class must implement 
these, unless they have been implemented in some of its parent classes. 
PCMParentClasses()
PCMDescribe()
PCMDescribeParameters()
PCMListParametrizations()

# Implementations for the following S3 generic are generated automatically via 
PCMGenerateParametrizations():

PCMSpecify()

# Transition distribution conditioned on parent node
PCMCond()
#  distribution under the model
PCMMean()
PCMMeanAtTime() {...}
PCMVar()
PCMVarAtTime() {...}
# Trait simulation
PCMSim()
# Likelihood calculation
PCMLik()

- Listing defined PCM models in the environment
PCMModels() {...}

- Listing of global options
PCMOptions() {...}

- Model parameter transformation (used by model parametrizations):
PCMApplyTransformation()
PCMApplyTransformation.default()  {...}
PCMApplyTransformation.PCM()  {...}

- Generate PCM model types in the user environment
PCMGenerateParametrizations() {...}

- Model object construction
PCM()
PCM.default() { ... }
PCM.character() { ... }

- Fixing/Unfixing a model parameter 
PCMFixParameter() {...}
PCMUnfixParameter() {...}

- Listing the regimes in a model object
PCMRegimes()
PCMRegimes.PCM() {...}
Printing PCM objects to the console:
format.PCM() {...}

- Preprocessing tree and model objects for fast likelihood calculation:
PCMInfo()
PCMInfo.PCM() {...}

PCMTree
Global utility functions for manipulating trees (phylo-objects) with assigned regimes on the 
branches (functions not shown)

BM, JOU, ...
Follow the same pattern as for OU

MixedGaussian
Maps different GaussianPCMs to 
different regimes (colors) in the tree.

Constructor:
MixedGaussian() {...}

Implemented S3 generics from PCM: 
PCMParentClasses.MixedGaussian() {...}
PCMDescribe.MixedGaussian() {...}
PCMParamCount.MixedGaussian() {...}
PCMCond.MixedGaussian() {...} 

OU__Diagonal_WithNonNegativeDiagonal_Sigma_x

Automatically generated model 
parametrizations via 
PCMGenerateParametrizations(). These 
represent method implementations for the 
S3 generics PCMParentClasses() and 
PCMSpecify(), generated on the base of 
the parent classe's  
PCMListParametrizations().

BM__Diagonal_WithNonNegativeDiagonal_Sigma_x

Figure 6.3: An overview of the PCMBase package. Each box represents a module. The modules
“PCM”, “PCMParam” and “PCMTree” define the end-user interface. In particular, the mod-
ule “PCM” defines the interface for adding model extensions. Function names written in
italic style denote S3 generic declarations. These functions can be defined or overwritten
by inheriting modules, to provide model-specific behavior. The module “GaussianPCM”
implements the pruning-wise likelihood evaluation. The functions ~ω, Φ and V for each
model within the framework must be implemented in specifications of the S3 generic func-
tion “PCMCond”. It is possible to define parametrizations restricting particular model
parameters, e.g. forcing a matrix parameter to be a diagonal matrix.
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- Simulating a tree with regimes (using the phytools package)

# make results reproducible
set.seed(20)

R <- 3; N <- 200;
# rate mtrix of transition from one regime to another
Q <- matrix(c(-0.1, 0, 0.1, 0, 0.01, -0.01, 0.1, 0, -0.1), 
            R, R)
colnames(Q) <- rownames(Q) <- letters[1:R]
tree <- phytools::pbtree(n=N, scale=1, b = 1, d = 0.4)
tree.abc <- phytools::sim.history(tree, Q, anc='a')
tree.abc.s <- phytools::map.to.singleton(tree.abc)
tree.abc.s$edge.regime <- match(names(tree.abc.s$edge.length), 
        letters[1:R])
PCMTreePlot(tree.abc.s, layout="fan")

- Simulating trait evolution
 

# The following code generates a k x M matrix, where M is the total 
# number of nodes in the tree:
data <- PCMSim( tree.abc.s, model, X0=model$X0 )
# The first columns correspond to the tips in the order of tree$tip.label
X <- data[ , 1:PCMTreeNumTips(tree.abc.s)]
PCMPlotTraitData2D(X, tree.abc.s)
 

- One likelihood calculation on a given model
 
loglik <- PCMLik(X, tree.abc.s, model)  
 

- Multiple likelihood calculations on different model parameters
 

# The first N columns correspond to the tips
X <- data[ , 1:PCMTreeNumTips(tree.abc.s)]
if( require(PCMBaseCpp) == FALSE ){
  # using default R-implementation (PCMLmr.default):
  metaInfo <- PCMInfo(X, tree.abc.s, modelOU)
} else {
    # using fast (parallel) C++ implementation (PCMBaseCpp):
  metaInfo <- PCMInfoCpp(X, tree.abc.s, modelOU)
}

# main loop (e.g. during model inference on given data)
while( NOT FINISHED ) {
  loglik <- PCMLik(X, tree.abc.s, modelOU, metaI = metaInfo)   
  model <- propose.next.model.of.the.same.class(model)
}

tree: 
(an object of S3  

class phylo)

  x11 x21 x31     ...     xN1
  x12 x22 x32     ...     xN2
                ...
  x1k x2k x3k      ...     xNk

X: 
(a k x N  numerical 

matrix)

model: 
(a named list with class 

attribute set to the model 
type, e.g. "OU", 

the class attribute for 
each model parameter is 

shown in angular 
brackets)

a k x k x R 
array; slices 

correspond to 
regimes.

, Sigma_x=
a k x k x R 

array; slices 
correspond to 

regimes.

, Sigmae_x=

  x01
  x02
   ...
  x0k

X0: 
(a k-vector)

- Showing the PCMBase runtime options:

PCMOptions()

- Showing the currently available model types 

PCMModels()

- Creating a PCM object for 2 traits and 3 regimes

# This will create a model object with default parameter values
model <- PCM("OU", k=2, regimes = 1:3)
print(model) 

- Setting parameter values manually

# The brackets in model$X0[ ]  below are important
model$X0[ ] <- c(0.2, 1.3)
# regime 1:
model$H[,, 1] <- matrix(c(1, 0, 0, 1), 2, 2)
model$Sigma_x[,, 1] <- matrix(c(1, 0, 0.6, 1), 2, 2)
# regime 2:
model$H[,, 2] <- matrix(c(2, 0, 0, 1), 2, 2)
model$Sigma_x[,, 2] <- matrix(c(1, 0, 0.6, 1), 2, 2)
# regime 3:
model$H[,, 3] <- matrix(c(0.12 0, 0, 0.2), 2, 2)
model$Sigma_x[,, 3] <- matrix(c(1, 0, 0.6, 1), 2, 2)

print(model)

# CAUTION: Do not assign entire parameters directly, because  
# this will eraze the parameter's attributes including its class.
# The following code is wrong:
model$X0 <- c(0.2, 1.3)

- Setting random parameter values

# First, we generate a random parameter vector for the model.
# The following code generates a random parameter vector for 
# the model  drawing from a uniform distribution between the 
# model's lower and upper limits:
vecParamValues <- PCMParamRandomVecParams(model)
print(vecParamValues)
# then, we load the generated vector into the model
PCMParamLoadOrStore(model, vecParamValues, 0, load=TRUE)
print(model)

- Trait values at the root of the tree are needed as initial state in PCMSim().
- Optionally, X0 can be added to a model as a parameter.

- Each edge has a regime (color). There are R different regimes. The regimes 
corresponding to the edges in tree$edge are specified by a vector, 
tree$edge.regime.

- In the case of a model with jumps, 
the tree must have an integer vector of 0's and 1's, tree$edge.jump, 
indicating the edges at which a jump took place.

- Column-vectors correspond to species (tips) in the order of tree$tip.label.
- Some (but not all) of the entries in a column can be missing measurements 

(NA) or non-existing traits (NaN).

a k x k x R 
array; slices 

correspond to 
regimes.

, H= , Theta=
a k x R 
matrixX0 =

a k-  
vector

<class: 
c("VectorParameter",
"_Global", 
"numeric")>

<class: 
c("MatrixParameter",
"matrix")>

<class: 
c("VectorParameter",
"matrix")>

<class: 
c("MatrixParameter",
"_UpperTriangularWithDiagonal, 
"_WithNonNegativeDiagonal")>

<class: 
c("MatrixParameter",
"_UpperTriangularWithDiagonal, 
"_WithNonNegativeDiagonal")>

Figure 6.4: Using the ‘PCMBase’ package The main runtime objects are depicted on the top of the
figure, followed by coding examples for the specific use-cases.
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2. Then, the coefficients Ai, ~bi, Ci, ~di, Ei and fi are calculated for each internal and
tip node in the tree based on the values ~ω, Φ and V calculated in the previous
step. This calculation is done in the function ‘PCMAbCdEf()’ within the module
“GaussianPCM” which, again, is inherited by all model modules (see Fig. 6.3).

3. Next, the coefficients Li, ~mi, ri are calculated based on the trait values at the tips,
the values of Ai,~bi, Ci, ~di, Ei and fi calculated in the previous step, and the recur-
sive procedure described in Section 6.2.4, Eqs. (6.10), (6.11) and (6.12).

4. Finally, the (log–)likelihood value is calculated using the formula

`(Θ) = pd f (X|~x0, T, Θ) = exp
(
~xT

0 L0~x0 +~xT
0 ~m0 + r0

)
, (6.13)

where Θ denotes the set of model parameters and ~x0 is treated either as a param-
eter (specified as a member ‘X0’ in the model object) or as the optimum point of
the above equation given by:

~x0 = −0.5L−1
0 ~m0. (6.14)

6.3.3 Parallel likelihood calculation with the ‘PCMBaseCpp’ add–in

For faster likelihood calculation, it is possible to use multiple processor cores to perform the
calculation of ~ω, Φ, V, Ai, ~bi, Ci, ~di, Ei and fi in parallel. This is possible, given the fact
that these coefficients depend solely on the model parameters and on the branch lengths in
the tree (see, e.g. Eqs. (6.17) and (6.18)). The calculation of the coefficients Li, ~mi, ri is not
fully parallelizable but can be divided in parallelizable steps (generations) using a parallel
post–order traversal algorithm (Mitov and Stadler, 2017a). We implemented this idea in the
accompanying package ‘PCMBaseCpp’, built on top of the ‘Armadillo’ template library for
linear algebra (Sanderson and Curtin, 2016), the ‘Rcpp’ package for seamless ‘R’ and ‘C++’
integration (Eddelbuettel, 2013) and the ‘SPLITT’ library for parallel tree traversal (Mitov
and Stadler, 2017a).

We compared the performance of the multivariate serial and parallel ‘PCMBase’ implemen-
tation against other univariate and multivariate implementations in a separate work (Mitov
and Stadler, 2017a). As shown in (Mitov and Stadler, 2017a), on contemporary multi-core
CPUs, the parallel ‘PCMBaseCpp’ implementation can speed up the likelihood calculation
up to an order of magnitude starting with 2 traits and trees of 100 to 10’000 tips. For univari-
ate OU models, it can be beneficial to implement stand-alone classes bypassing the complex
k × k matrix operations involved in the multivariate case. As shown in (Mitov and Stadler,
2017a), this can result in up to 100 fold faster likelihood calculation in the stand-alone class
implementation. The use of PCMBaseCpp as a C++ back-end is recommended even if not
using multi-core parallelization, because serial C++ code execution is still nearly 100 times
faster than the equivalent implementation written in R (R-version at time of writing this
article was 3.5).

6.4 standard extensions

6.4.1 Missing values

The trait measurement data are the observations at the tips. If a tip is described by a suite of
traits it can easily happen that some of them are missing, either due to missing measurement
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or because the corresponding trait does not exist for the species. Removing such a tip from
any further analysis would be wasting information, i.e. the observed data for the tip. We
notice that missing measurements for existing traits correspond to the marginal distribution
of the observed measurements. In contrast, non-existing traits correspond to reduced dimen-
sionality of the trait vector for the tip in question. Our computational framework keeps track
of both of these cases by carefully accounting for the dimensionality of the trait vectors at
the tips and the internal nodes and appropriately marginalizing during the integration part,
as described below (see also Thm. 4 for examples). The input data is passed as a matrix
(rows—trait measurements, columns—different species) the missing measurements have to
be indicated as ‘NA’s, whereas the non-existing traits have to be indicated as ‘NaN’s (fig. 6.1).

We now turn to describing the technicalities of the mechanism taking care of the missing
data. We use a vector of positive integers,~k j, to denote the ordered set of active coordinates
for a node j. If j is a tip, then ~k j gives the indices of all non–missing entries in the trait
vector for j; for an internal (unmeasured) node this gives the possibility to make some trait
inactive. The cardinality of a vector is denoted with |~k|. For a vector, the notation ~θ[~k] means
the vector of elements of ~θ on the coordinates contained in ~k, while for a matrix H[~k1,~k2]

means the matrix H with only the rows on the coordinates contained in ~k1 and columns
contained in ~k2. For example take ~θ = (10, 11, 12, 13) and ~k = (1, 3), then ~θ[~k] = (10, 12),
while if~k1 = (1, 3),~k2 = (2, 4) and

H =




10 11 12 13
14 15 16 17
18 19 20 21
22 23 24 25




,

then

H[~k1,~k2] =

[
11 13
19 21

]
.

If a vector or matrix does not have any indication on which entries it is retained, then it means
that we use the whole vector or matrix. All of the above notation is graphically represented
in Fig. 6.1.

In Thm. 2 we showed that in our framework we have the representation that ~xi ∈ Rki con-
ditional on ~xj ∈ Rk j is N (~ωi + Φi~xj, Vi) distributed. Here, there is no issue on missing values
as we are just working with a probabilistic representation. However, in practice one assumes
some stochastic model for a k dimensional trait and under it (and that all observations are
of full dimension) we would have that ~xi ∈ Rk conditional on ~xj ∈ Rk is N (~̃ωi + Φ̃i~xj, Ṽi)

distributed, for some auxiliary matrices Φ̃i, Ṽi and vector ~̃ωi. Then, to obtain the required
representation of Thms. 2 and 3 we set

~ωi = ~̃ωi[~ki],
Φi = Φ̃i[~ki,~k j],
Vi = Ṽi[~ki,~ki].

(6.15)
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6.4.2 Measurement error

Commonly in PCMs the observed values at the tips are averages from a number of individ-
uals of each species. Using just these average values does not take into account the intra–
species variability. Ignoring this can have profound effects on any further estimation (see
Hansen and Bartoszek, 2012). Following the PCM tradition, we call this intra–species vari-
ability a measurement error, but one should remember that it can be due to true biological
variability. Including this variability in our framework is straightforward. One recognizes,
which component of the quadratic polynomial representation corresponds to the variance
of the tip and augments it by the measurement error variance matrix, see the formulae in
Section 6.5. From the user interface point of view this is a bit more complicated. The mea-
surement error variance matrix is specific to each tip. Therefore in this situation the user
has to define for each tip a different regime, with a regime specific variance matrix (called
‘Sigmae’ in the implemented by us classes). Of course other model parameters can also be
regime specific, e.g. the deterministic optima (‘Theta’ in the implemented by us classes).

6.4.3 Non–ultrametric trees and multifurcations

If one has only measurements from contemporary species, then the phylogeny describing
them is naturally an ultrametric one. However, if for some reason the phylogeny is not ul-
trametric, e.g. it contains extinct species, then the quadratic polynomial framework can be
directly employed. Because each branch is treated separately, it does not matter whether the
tree is or is not ultrametric. Therefore, there is no need to search for transformations as in
the 3–point structure based methods. This we believe should make the ‘PCMBase’ package
very straightforward to use. Furthermore, from the proof of Thm. 3 it is obvious that the tree
does not need to be binary. Therefore, this adds even more flexibility to the user, they may
use trees with polytomies.

6.4.4 Punctuated equilibrium

It is an ongoing debate in evolutionary biology whether the dominant mode of evolution is a
gradual one or that during brief periods of time species undergo rapid change. Any gradual
model of evolution can be extended to have a punctuated component by including jumps.
Jump mechanisms, like jumps at the start of specific lineages or common jumps for daughter
lineages, have to be developed on a per model basis, see Section 6.5.3 for an example. One
current restriction is that ‘PCMBase’ assumes that lineages do not interact after speciation. It
is not possible to implement a model class such that if one daughter lineage jumps the other
does not (this is communication between lineages after speciation). Therefore, to have such a
situation the user needs to by themselves code on which lineages a jump can take place and
on which it cannot. This can be easily achieved using the jumps mechanism of ‘PCMBase’.
The ‘phylo’ phylogenetic tree object can be enhanced by a ‘edge.jump’ binary vector. The
length of this vector equals the number of edges in the tree. A 0 entry indicates that no jump
took place on the corresponding branch, while a 1 entry that it did.
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Figure 6.5: Simulations of trait evolution under four PCMs. A: parameters of the tree simulation (λ:
speciation–rate; δ: extinction–rate; Qa→b: migration rate from habitat “a” to habitat “b”;
Qb→a: vice–versa of Qa→b. The other parameters are described in the text. B: A birth–death
phylogenetic tree generated using the function ‘pbtree()’ and ‘sim.history()’ from the
package ‘phytools’ (Revell, 2011). C—E: scatter plots of the traits observed at the tips of
the tree after random simulation using the function ‘PCMSim()’ of the ‘PCMBase’ package.
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6.5 ornstein–uhlenbeck type models

6.5.1 The phylogenetic Ornstein–Uhlenbeck process

Currently the Ornstein–Uhlenbeck process is the workhorse of the phylogenetic compara-
tive methods framework. Since its introduction by Hansen (1997) it has been considered in
detail with multiple software implementations (e.g. Bartoszek et al., 2012; Beaulieu et al.,
2012; Butler and King, 2004; Clavel, Escarguel, and Merceron, 2015; FitzJohn, 2010; Goolsby,
Bruggeman, and Ané, 2016; Hansen, Pienaar, and Orzack, 2008; Ho and Ané, 2014a, to name
a few)

In the most general form, the multivariate Ornstein–Uhlenbeck process describes the evolu-
tion of a k–dimensional suite of traits ~x ∈ Rk over a period of time by the following stochastic
differential equation

d~x(t) = −H
(
~x(t)−~θ(t)

)
dt + Σxd~W(t), (6.16)

where ~W(t) is a k–dimensional standard Wiener process, H ∈ Rk×k,~θ(t) ∈ Rk and Σx ∈ Rk×k.
Notice that when H = 0, we obtain a Brownian motion model.

There is no current software package, in the case of phylogenetic OU models, that allows
for an arbitrary form of the matrix H. Except for the Brownian motion case, nearly all assume
that H has to be symmetric–positive–definite (note that this encompasses the single trait
case). ‘mvMORPH’ (Clavel, Escarguel, and Merceron, 2015), ‘SLOUCH’ (Hansen, Pienaar,
and Orzack, 2008) and ‘mvSLOUCH’ (Bartoszek et al., 2012) seem to be the only exceptions.
‘mvMORPH’ and ‘mvSLOUCH’ allow for a general invertible H (with options to restrict it
to diagonal, triangular, symmetric positive–definite, positive eigenvalues, real eigenvalues or
generally invertible). Furthermore, ‘mvSLOUCH’ allows for a special singular structure of
H. The matrix has to have in the upper–left–hand corner an invertible matrix (‘SLOUCH’,
the univariate predecessor of ‘mvSLOUCH’ has a scalar here), arbitrary values to the right
and 0 below. This type of model is called an Ornstein–Uhlenbeck–Brownian motion (OUBM)
model. In contrast when H is non–singular the model is called an Ornstein–Uhlenbeck–
Ornstein–Uhlenbeck (OUOU) one, some variables are labelled as predictors while the rest as
responses.

It is of course not satisfactory to have restrictions on the form of H. Different setups have
different biological interpretations with regards to modelling causation (see Bartoszek et
al., 2012; Reitan, Schweder, and Henderiks, 2012). In particular singular matrices will be
interesting as they will correspond to certain linear combinations of traits under selection
pressures while other linear combinations are free of this. The OUBM model is a special case
where a pre–defined group of traits is assumed to evolve marginally as a Brownian motion.
Of course a more general setup is desirable and actually, as we show in this work, possible.

Here the the only assumption we make on H is that it posses an eigendecomposition,
H = PΛP−1 (Λ is a diagonal matrix, and the i–th element of the diagonal is denoted as λi).
In particular Λ can be singular, i.e. some eigenvalues are 0 and furthermore the eigenval-
ues/eigenvectors are allowed to be complex.

In this work we assume that Σx is upper triangular (alternatively lower). Despite how
it looks at first sight, this is not any sort of restriction, as in the likelihood we have only
Σ := ΣxΣT

x . We furthermore assume that Σ is non–singular, otherwise the whole model
would be singular from a statistics point of view.
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Most OU model implementations assume that the deterministic optimum ~θt is constant
along each branch. Different branches may have different levels of it but regime switches
along a branch are not allowed (however, Bastide et al., 2018; Ingram and Mahler, 2013;
Khabbazian et al., 2016, are exceptions as they attempt to infer points of switching).

If we assume that the process starts at a value ~x(0) = ~x0, then after evolution over time t
(assuming all parameters are constant on this interval) it will be normally distributed with
mean vector and variance–covariance matrix (Eqs. (A.1, B.2) Bartoszek et al., 2012)

E [~x] (t) = e−Ht~x0 +
(
I− e−Ht)~θ ∈ Rk

Var [~x] (t) =
∫ t

0 e−HvΣe−HTvdv

= P
([

1
λi+λj

(
1− e−(λi+λj)t

)]
1≤i,j≤k

� P−1ΣP−T
)

PT ≡ V(t) ∈ Rk×k,
(6.17)

where I is the identity matrix of appropriate size. Notice that in the above, H only enters
the moments, through its exponential. Therefore the moments can be calculated (and hence
the distribution is well defined) for all H, including defective ones. However, if H has (as we
assumed) an eigendecomposition, then the exponential and in turn variance formula can be
calculated effectively. If λi = λj = 0, then the term in the variance has to be treated in the
limiting sense λ−1(1− e−λt) → t with λ → 0. Therefore, the variance matrix is always well
defined and never singular for t > 0.

We assumed that H has to have an eigendecomposition while the process is well defined
for any H, including defective ones. Calculation of the matrix exponential for a defective
matrix can be done using Jordan block decomposition. However, we do not provide such
functionality, as Jordan block decomposition is numerically unstable and in fact, we are not
aware of any ‘R’ implementation of it. Hence, defective matrices will result in errors. However,
it is important to remember that defectiveness is the exception and not the rule for matrices.
If checked for (by e.g. checking if the eigenvector matrix from ‘eigen()”s output is non–
singular, Corollary 7.1.8., p. 353 Golub and Van Loan, 2013) and handled before calling using
our package, it should not cause major issues. why don’t we state what V, Ψ, omega is?

6.5.2 Multivariate Ornstein–Uhlenbeck

The Ornstein–Uhlenbeck is a special case of Eq. (6.1) and here due to its importance in the
phylogenetic comparative methods community we discuss it in detail. In particular we show
how to construct the composite parameters found in the proof of Thm. 2 from the OU process
representation of Eq. (6.16).

To simplify notation we denote the defined in Eq. (6.17) covariance matrix as Ṽi ≡ V(ti) +
δi∈{T′0s tips}Σ

i
e, where the Kronecker δ–symbol is defined as δi∈{T′0s tips} = 1 if i is a tip of the

tree and δi∈{T′0s tips} = 0. The matrix Σi
e is the measurement error or intra–species variability

variance matrix for tip species i.
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Theorem 4. Let~ki be the vector of coordinates on which ~xi is observed,~k j be the vector of coordinates
for ~xj and~k the full vector of coordinates. Using the parametrization found in the proof of Thm. 2 a
multivariate Ornstein–Uhlenbeck process of evolution can be represented as

Vi = Ṽi[~ki,~ki] ∈ R|~ki |×|~ki |,
~ωi =

(
I[~ki,~k]− e−Hti [~ki,~k]

)
~θi[~k] ∈ R|~ki |,

Φi = e−Hti [~ki,~k j] ∈ R|~ki |×|~k j|.

(6.18)

Proof. In the multivariate OU case, Eq. (6.1) will be

pd f (~xi|~xj, ti) = N
(

e−Hti~xj +
(

I[~ki,~k]− e−Hti [~ki,~k]
)
~θi[~k], Vi[~ki,~ki]

)
.

These formulae do not depend on whether the eigenvalues of H are positive, negative or 0.
They will still be correct. The exponentiation of H will also not depend on this. Only with Vi
will we need to take an appropriate limit as an eigenvalue is 0, see comments after Eq. (6.17).

Corollary 1. For a multivariate Brownian motion, H = 0 and Ṽi = tiΣ + δi∈{T′0s tips}Σ
i
e process of

evolution, hence using the parametrization found in the proof of Thm. 2 one can represent it as

Vi = Ṽi[~ki,~ki] ∈ R|~ki |×|~ki |,
~ωi = ~0[~ki] ∈ R|~ki |,
Φi = I[~ki,~k j] ∈ R|~ki |×|~k j|.

(6.19)

In Fig. 6.5, panel C one can see an example collection of tip observations resulting from
simulating of a bivariate trait following a BM process on top of a phylogeny and in panel D
following an OU process.

6.5.3 Multivariate Ornstein–Uhlenbeck with jumps

It is an ongoing debate in evolutionary biology at what time does evolutionary change take
place. Two theories state that change may take place either at times of speciation (punctuated
equilibrium Eldredge and Gould, 1972; Gould and Eldredge, 1993) or gradually accumulate
(phyletic gradualism, see references in Eldredge and Gould, 1972). There seems to be ev-
idence for both types of evolution. For example, Bokma (2002) discusses that punctuated
equilibrium is supported by fossil records (see Eldredge and Gould, 1972) but on the other
hand Stebbins and Ayala (1981) also indicate experiments supporting phyletic gradualism.

Therefore, one would want processes that incorporate both types of evolution and allow for
testing if either of them dominates. Ornstein–Uhlenbeck with jumps models are a framework
where this is possible. Shortly, along a branch the traits follows an OU process. But then
just after speciation a jump in the traits’ values can take place. Whether such a jump takes
place on a given, some or all daughter lineages is up to the specific implementation of the
framework. From the perspective of the ‘PCMBase’ package the location of the jumps has
to be provided. It is in fact also possible in our implementation, to place jumps at arbitrary
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points inside a branch. Models for jump locations are at a different level of PCM modelling,
then what ‘PCMBase’ handles.

Ornstein–Uhlenbeck processes with jumps capture a key idea behind the theory of punc-
tuated equilibrium. At an internal node in the tree something happens that drives species
apart and then “The further removed in time a species from the original speciation event
that originated it, the more its genotype will have become stabilized and the more it is likely
to resist change.” (Mayr, 1982). Between branching events (and jumps) we can have stasis—
“fluctuations of little or no accumulated consequence” taking place (Gould and Eldredge,
1993). This corresponds well to an OU with jumps model. If the speed of convergence of the
process is large enough, then the stationary distribution is approached rapidly and the sta-
tionary oscillations around the (constant) mean can be interpreted as stasis between jumps.

Corollary 2. For a multivariate OU defined with jumps, jump distribution N (~µJ , ΣJ) and denoting
by the indicator ξi (we assume that the jumps are known) if a jump took place at the start of the branch
leading to node i, we have

Ṽi =
ti∫
0

e−HvΣe−HTvdv + ξie−Hti ΣJe−HT ti + δi∈{T′0s tips}Σ
i
e. (6.20)

Using the parametrization found in the proof of Thm. 2 one can represent it as

Vi = Ṽi[~ki,~ki] ∈ R|~ki |×|~ki |,
~ωi = ξie−Hti [~ki,~k]~µJ [~k] +

(
I[~ki,~k]− e−Hti [~ki,~k]

)
~θi[~k] ∈ R|~ki |,

Φi = e−Hti [~ki,~k j] ∈ R|~ki |×|~k j|.

(6.21)

The multivariate Brownian motion with jumps model follows as an immediate corollary
(H→ 0) .

Corollary 3. For a multivariate Brownian motion with jumps (jumps defined the same as in Corollary
2) the variance at a node i is Ṽi = tiΣ[~ki,~ki] + ξiΣJ [~ki,~ki] + δi∈{T′0s tips}Σ

i
e. Using the parametrization

found in the proof of Thm. 2 one can represent it as

Vi = Ṽi[~ki,~ki] ∈ R|~ki |×|~ki |,
~ωi = ξi~µJ [~ki] ∈ R|~ki |,
Φi = I[~ki,~k j] ∈ R|~ki |×|~k j|.

(6.22)

In Fig. 6.5, panel E one can see an example collection of tip observations resulting from
simulating of a bivariate trait following an OU process with jumps on top of a phylogeny.

6.5.4 Beyond the Ornstein–Uhlenbeck process

There are a number of popular PCM models that do not fall into the above described
OU framework despite appearing very similar. In particular we mean the BM with trend,
drift, early burst/Accelerating–decelerating (EB/ACDC) or white noise (implemented in the
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‘geiger’ ‘R’ package Harmon et al., 2008). With the exception of white noise, they all can be
represented by the SDE (cf. Eq. (1) of Manceau, Lambert, and Morlon, 2016)

{
d~x(t) =

(
~h(t)−H~x(t)

)
dt + Γ(t)d~W(t),

~x(0) = ~x0.
(6.23)

(Manceau, Lambert, and Morlon, 2016), then provide the expectation and variance under the
model, by slightly modifying their Eqs. (4a) and (4b),

E
[
~xi|~xj

]
= e−tiHi~xj +

te
i∫

ts
i

e(s−te
i )Hi~hi(s)ds,

Var
[
~xi|~xj

]
=

te
i∫

ts
i

e(s−te
i )Hi Γi(s)ΓT

i (s)e
(s−te

i )H
T
i ds,

(6.24)

where ts
i is the time at the start of the branch and te

i at the end (of course ti = te
i − ts

i ). This
corresponds in our notation to

~ωi =
te
i∫

ts
i

e(s−te
i )Hi~hi(s)ds,

Φi = e−tiHi ,

Vi =
te
i∫

ts
i

e(s−te
i )Hi Γi(s)ΓT

i (s)e
(s−te

i )H
T
i ds.

(6.25)

Naturally everything should be appropriately (as described in Section 6.4.1) adjusted if miss-
ing values are present. Hence, in the subcase of non–interacting lineages, our framework covers
Manceau, Lambert, and Morlon (2016)’s. As the initially mentioned models are subcases (cf.
Tab. 1 of Manceau, Lambert, and Morlon, 2016) they are available in our framework. In par-
ticular (after an appropriate generalization to the multivariate traits), ACDC model—~ωi =~0,
Φi = I, Vi =

∫ te
i

ts
i

esRi ΣiΣ
T
i esRT

i ds (see Eq. 6.17 for how to calculate this integral when R is

eigendecomposable), BM with drift—~ωi = ~hit, Φi = I, Vi = ΣiΣ
T
i ti and BM with trend—

~ωi = ~0, Φi = I, Vi =
∫ te

i
ts
i

Γi(s)ΓT
i (s)ds, for a linear Γi(s) (based on ‘geiger”s manual). The

white noise process corresponds to a situation, where the observations are i.i.d.—a star phy-
logeny with all branches of length 1 and all species have same mean vector (denoted~h) and
variance–covariance matrix (V). In our representation this is ~ωi =~h, Φi = 0 and Vi = V.

6.6 technical correctness

Validating the technical correctness is an important but often neglected step in the develop-
ment of likelihood calculation software. This step is particularly relevant for complex mul-
tivariate models, because logical errors can occur in many levels, such as the mathematical
equations for the different terms involved in the likelihood, the programming code imple-
menting these equations, the code responsible for the tree traversal, the parametrization of
the model and the preprocessing of the input data. These logical errors add up to numerical
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errors caused by limited floating point precision, which can be extremely hard to identify. Ul-
timately, these errors lead to wrong likelihood values, false parameter inference and wrong
analysis. All these concerns motivate for a systematic approach of testing the correctness of
the software.

We implemented a technical correctness test of the three models currently implemented in
‘PCMBase’ using the method of posterior quantiles proposed by Cook, Gelman, and Rubin
(2006). The posterior quantiles method (Alg. 6.1) is a simulation based approach. It employs
the fact that, for a fixed prior distribution of the model parameters, the sample of posterior
quantiles of any model parameter, θ is uniform (see e.g. Cook, Gelman, and Rubin, 2006;
Mitov and Stadler, 2017a, for details). Thus, any deviation from uniformity of the posterior
quantile sample for any of the model parameters indicates the presence of an error, either
in the simulation software, or in the likelihood calculator used to generate the posterior
samples.

Algorithm 6.1 : Posterior quantiles method
1: Sample “true” parameters Θ from the prior;
2: Simulate random data, XΘ, under the model specified by Θ;
3: Generate a sample Sθ from the posterior distribution Pθ = P(θ|XΘ);
4: Calculate the empirical quantile of the “true” θ in Sθ ;

We used a fixed non–ultrametric tree of N = 515 tips with two regimes “a” and “b”. The
tree was generated using the functions ‘pbtree()’ and ‘sim.history()’ from the package
‘phytools’ (Revell, 2011). We implemented the posterior quantile test using the ‘BayesValidate’
‘R’–package (Cook, Gelman, and Rubin, 2006). For each model we set a parametrization and
a prior distribution as follows:

• BM
3 parameters: ΘBM = [Σ11, Σ12, Σe,11], such that

Σa =

(
Σ11 Σ12

Σ12 Σ11

)
, Σb =

(
Σ11 0
0 Σ11

)
, Σe,a = Σe,b =

(
Σe,11 0

0 Σe,11

)

prior: Σ11 ∼ Exp(1), Σ12 ∼ U (−0.9Σ11, 0.9Σ11), Σe,11 ∼ Exp(10).

• OU
8 parameters: ΘOU = [ΘBM, θb,1, θb,2, Hb,11, Hb,12, Hb,22], such that Σa, Σb, Σe,a and Σe,b
are defined as for BM and

~θa =

(
0
0

)
, ~θb =

(
θb,1

θb,2

)
, Ha =

(
0 0
0 0

)
, Hb =

(
Hb,11 Hb,12

Hb,12 Hb,11

)

prior: for parameters in ΘBM the same prior has been used as for the BM model; for
the new parameters, the prior has been set as θb,1 ∼ N (1, .25), θb,2 ∼ N (2, .5), Hb,11 ∼
Exp(1), Hb,22 ∼ Exp(1), Hb,12 ∼ U (−0.9

√
Hb,11Hb,22, 0.9

√
Hb,11Hb,22).
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Figure 6.6: Absolute Zθ–statistics for the four posterior quantile tests. The Zθ statistic is described
by Cook, Gelman, and Rubin (2006). High values indicate deviation from uniformity of
the posterior quantile distribution for an individual model parameter (circles) or a batch
of several model parameters (bullets). The reported values, smaller than 3 for all param-
eters, had insignificant p-values as well as Bonferroni–adjusted p–values. The plots were
generated using the package ‘BayesValidate’ (Cook, Gelman, and Rubin, 2006).

• JOU
9 parameters: ΘJOU = [ΘOU , Σj,11], such that Σa, Σb, Σe,a, Σe,b, ~θa, ~θb, Ha, Hb are de-
fined as for OU and

~µj,a =

(
−θb,1

−θb,2

)
, ~µj,b =

(
θb,1

θb,2

)
, Σj,a =

(
1 0
0 1

)
, Σj,b =

(
Σj,11 0

0 Σj,11

)

prior: for parameters in ΘOU the same prior has been used as for the OU model; for the
new parameter, the prior has been set as Σj,11 ∼ Exp(10).

For each, model, we ran the function ‘validate()’ from the ‘BayesValidate’ package, set-
ting the number of replications to 48. The results are summarized in Fig. 6.6. All Bonferroni
adjusted p–values of the absolute Zθ statistics were above 0.2, showing that the posterior
quantiles did not deviate from uniformity (see Cook, Gelman, and Rubin, 2006, for details
on Zθ statistic).

6.7 discussion

Currently the mathematical frameworks proposed for PCMs are applied to situations that
are very different from the original motivation of a between species analyses within a small
clade of some quantitative trait. They are employed in many situations with a tree structure
behind the measurements. For example, traits being gene expression levels (Bedford and
Hartl, 2009; Rohlfs, Harrigan, and Nielsen, 2013) or epidemiological measurements (the tree
connects the epidemic’s outbursts Pybus et al., 2012) are analysed.

With large and diverse clades, there is a need to vary the parameters of the models across
different clades or epochs in the tree. Already e.g. Bartoszek et al. (2012), Butler and King
(2004), and Hansen (1997) showed the possibility of varying the deterministic optimum or
OU processes. Beaulieu et al. (2012), Eastman et al. (2011), and Manceau, Lambert, and Mor-
lon (2016) went further to allow all parameters of the underlying SDE to vary over the tree.
Estimating the time and branches for parameter changes has been proposed in Ingram and
Mahler (2013), Khabbazian et al. (2016) and Bastide et al. (2018) with implementations in
‘SURFACE’, ‘l1ou’ and ‘PhylogeneticEM’ ‘R’ respectively. The branching/extinction proba-
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bilities may depend on the underlying trait (QuaSSE in ‘diversitree’ FitzJohn, 2010). A differ-
ent direction is the study of theoretical properties of branching stochastic processes. One can
ask questions about the long term properties of the phylogenetic sample, parameter estima-
bility or more generally of the distribution of the estimators (e.g. Ané, Ho, and Roch, 2016;
Bartoszek and Sagitov, 2015; Cressler, Butler, and King, 2015; Ho and Ané, 2013, 2014b).

The situations mentioned above can easily require likelihood evaluations well beyond the
amount of a “standard” optimization (e.g. an exponential number of regime patterns on the
tree or reestimation to obtain the estimators’ distribution). Furthermore, the trees connected
to such calculations to be analysed can be huge, going into thousands of tips such as HIV
data analysed e.g. in (Hodcroft et al., 2014; Mitov and Stadler, 2018). Hence, being able to
quickly evaluate the likelihood is crucial.

Our package offers the possibility to very quickly obtain the likelihood for very large
phylogenies for a wide range of models. Further, it is extremely flexible allowing the user to
easily use it as a computational engine for their particular modelling setup/parametrization.
‘PCMBase’ is able to handle multiple standard extensions, allowing the scientist to use all
observed data. Finally, the package is written in such a way that it can be further developed
to include more complex situations.

Some “standard extensions” from Section 6.4 deserve special mention. Firstly and briefly
we remind the reader that as ‘PCMBase’ handles non–ultrametric (Section 6.4.3) trees. Thus
it can directly use fossil data or pathogen data. Currently, it is assumed that all samples
are tips in the tree, thus we do not support sampled ancestor trees Gavryushkina et al.,
2014. However, it will be straightforward to implement internal measurements on the tree if
required by the user.

In the same Section 6.4.3, we notice that from the perspective of ‘PCMBase’ the out–degree
of an internal node is irrelevant. This is as the likelihood is calculated as the product over all
daughter clades. Therefore, our computational engine should be appreciated by users who
have poorly resolved trees with polytomies.

‘PCMBase’ handles incomplete observations of traits, meaning partially measured fossils
do not pose any problem. As mentioned in Section 6.4.1 ‘PCMBase’ distinguishes two types
of missingness, unobserved trait (‘NA’) and non–existing trait (‘NaN’). From the perspective
of the user this might seem like a mere formality. However, from the perspective of the
likelihood calculations it makes a profound difference. Unobserved traits are integrated over,
meaning that first ~ωi, Vi, Φi are calculated as if all k traits were present and only afterwards
are appropriate entries/rows and columns removed. The second case of non–existing traits
is treated differently, ~ωi, Vi, Φi are calculated taking into account that the trait vector at
the given node is from a lower dimension (i.e. Ai, ~bi, Ci, ~di and Ei are taken from lower
dimensions by removing appropriate entries/rows and columns).

What should be particularly useful for the applied researcher is that one can specify the
non–presence at internal nodes of the phylogeny. One does not need to have any measure-
ments on these nodes. For example if one is studying five traits, one could have associated
with an internal node j, the vector ~k j = (‘NA,NA,NA,NaN,NaN’)T, meaning that there are no
measurements on the first three traits, while the last two are not present at the species corre-
sponding to node j. Firstly, this allows for correct handling of ancestral species that did not
have exhibit certain traits present that are present in (some) contemporary species.

The mathematical approach utilized in the package is furthermore, very flexible in the
sense that it can be directly extended in directions beyond the normal, non–interacting lin-
eages setup.
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A random variable with density as in Eq. (6.1) belongs to the quadratic exponential family
as defined in Def. 2.

Definition 2. (cf. Def. 2 of Gouri ’eroux, Monfort, and Trognon, 1984) A random variable is said to
belong to the quadratic exponential family if its pdf is a function acting on Rk with representation

pd f (~u) = exp
(

a + b(~u) +~c~u + ~uTD~u
)

, (6.26)

where a and b(~u) are scalars, Rk 3 ~c is a vector of size k and Rk×k ∈ D is a matrix.

One can see that setting b(~u) = 0 (cf. Example 2.5 Ziegler, 2011) results in the represen-
tation of Eq. (6.1). However, the family of densities with pdfs following Eq. (6.26) is more
general. We can see that from the proof of Thm. 3 that if in Thm. 2 we would drop the re-
quirement of non–zero support on Rki , then we can obtain non–normal models for whom the
likelihood can be rapidly found using our method. If fact, we can see that the key step in

Thm. 3’s proof is the starred equality
F
=. There we calculate the integral over Rki . If the space

is different, then in the box in the next step we would have a different constant. The only
condition is that this constant (i.e. region of integration) cannot depend on ~xj. It is important
to point out that our approach makes it straightforward to model traits that are constrained
by some minimum and maximum value. We just include this assumption in the region of
integration and constant fi.

One can also include discrete models. The simplest example is a binary trait with states
0 and 1. Let pji(ti), i ∈ {0, 1}, j ∈ {0, 1} be the probability of change from state j to i in time
ti. We can write this model in the form of Eq. (6.1),

pd f (xi|xj, ti) = exp
(
log p00(ti) + xi(log p01(ti)− log p00(ti)) + xj(log p10(ti)− log p00(ti))

+xixj(log p00(ti) + log p11(ti)− log p01(ti)− log p10(ti))
)

,

where xi, xj ∈ {0, 1}. If furthermore, p01(ti) = 1− p11(ti), then the model will allow for a
version of Thm. 3, i.e. the likelihood for all the observations will be of the form of Eq. (6.7).
This is a big restriction as it implies that the transition matrix is parametrized by one number
and has to be of the form

[
p00(t) 1− p00(t)
p00(t) 1− p00(t)

]
.

However, this is the price to pay so that the constant after the equality
F
= does not depend on

xj.
What we presented above with the binary trait is more of an mathematical exercise, to

present an example of a non–normal model. Of course, Felsenstein (1973)’s pruning algo-
rithm is the way to handle discrete models. There one needs to calculate the transmission
probability P(t) over a branch of length t. We assume a very special form for P(t), allowing
for rapid computations, and hence can only handle a very restricted sub–model.

Another direction in which ‘PCMBase’ has the potential to be extended is to drop the
assumption of independent lineage evolution after speciation, i.e. the trait exactly follows
the tree structure. Such a restriction is of course not biologically realistic, but had to made
in nearly all PCM inference packages due to complications caused for likelihood evalua-
tion. In many species, especially plants, hybridization events take place. Furthermore, if the
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tips of the tree correspond not to species but to populations, gene exchange can be contin-
uous in time, i.e. migration takes place. Models with interactions, especially migration have
been considered in the literature (e.g. Bartoszek et al., 2017; Drury et al., 2016; Jhwueng and
OMeara, 2015; Manceau, Lambert, and Morlon, 2016; Nuismer and Harmon, 2015). From the
mathematical point of view it is possible to include migration models in the described here
framework. If the transition law is normal, one would consider the collection of co–evolving
species and integrate over their joint ancestral state(s) (similarly as Bartoszek et al., 2017;
Drury et al., 2016; Manceau, Lambert, and Morlon, 2016, treat the mean vector and variance–
covariance matrix). However, from the implementation point of view it is more complex as
one needs to keep track of which parts of the phylogeny are lumped and different model
parameters for the lumped parts, that also describe how the lineages interact. Also, a user–
friendly interface is a challenge. Therefore, we leave modelling interacting lineages for future
developments of ‘PCMBase’.

Despite the generality, speed and easiness of use of the package the user has to be aware
of a potential pitfall. Theorem 2 and the proof of Thm. 3 indicate a numerical weakness
of our method. If a branch ending at node i is extremely short, then the associated with
it variance–covariance matrix, Vi, can be computationally singular. Hence, calculating its
inverse, a necessary step to obtain the likelihood, will not be possible. ‘PCMBase’ catches
such an error and returns it, pointing to the offending node. ‘PCMBase’ proposes a way to
handle this condition: if the branch is shorter than a user-specified threshold (runtime options
“PCMBase.Skip.Singular” and “PCMBase.Threshold.Skip.Singular”), the whole branch can
be treated as a 0-length branch and skipped during the likelihood calculation.
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This chapter introduces mixed Gaussian phylogenetic models (MGPMs), based on the
GLInv family discussed in Chapter 6. MGPMs address one issue that has been stated in the
discussion of Chapter 3, namely, the fact that most of the models used to estimate phyloge-
netic heritability assumed a homogeneous evolutionary process over the whole tree. Taking
advantage of the PCMBase R-package for fast likelihood calculation, I develop an algorithm
for approximate maximum likelihood inference of an optimal MGPM model fit to multiple
trait phylogenetically linked comparative data. I illustrate this approach with an analysis of
the brain–body–mass allometry in mammals.
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abstract

Gaussian phylogenetic models like Brownian motion and Ornstein-Uhlenbeck processes are
the workhorses of modeling continuous trait evolution. However, these models fit poorly
to big trees, because they neglect the heterogeneity of the evolutionary process in different
lineages of the tree. Previous works have addressed this issue by introducing shifts in the
evolutionary model occurring at inferred points in the tree. In all current implementations,
though, these shifts are "intra-model", meaning that they allow a jump in one or two model
parameters, keeping all other parameters "global" for the entire tree. Such restrictions are
artificial, because they are driven by non-biological concerns, e.g. computational feasibility.
There is no biological reason to restrict a shift to a single model parameter or, even, to a
single type of model. Mixed Gaussian phylogenetic models (MGPMs) incorporate the idea
of jointly inferring different types of Gaussian models, with independent parameter sets,
modeling the evolution in different parts of the tree. Here, we propose a new approximate
maximum likelihood method for fitting MGPMs to comparative data comprising possibly
incomplete measurements for several traits from extant and extinct phylogenetically linked
species. The method enables data-driven generation of evolutionary hypotheses, reducing
the need of uninformed preliminary modeling assumptions. We applied the method to the
largest published tree of mammal species with body- and brain-mass measurements, show-
ing strong statistical support for a MGPM with twelve distinct evolutionary regimes. Based
on this result, we state a hypothesis for the evolution of the brain-body-mass allometry over
the past 160 million years.

7.1 introduction

Life is extremely diverse as the result of the dynamic change in evolutionary forces driving
speciation and phenotypic evolution Benton and Emerson, 2007. Gaussian phylogenetic mod-
els, such as Brownian motion (BM) and Ornstein-Uhlenbeck (OU) processes, have become a
standard tool in the comparative analysis of quantitative traits (Butler and King, 2004; Pen-
nell and Harmon, 2013). Among many applications, these models have been used for correct-
ing the errors from phylogenetic correlation in comparative regression analysis (Felsenstein,
1985; Martins and Hansen, 1997), for quantifying the phylogenetic signal in morphological
and pathogen traits (Alizon et al., 2010; Bertels et al., 2017; Blanquart et al., 2017; Hodcroft
et al., 2014; Housworth, Martins, and Lynch, 2004; Mitov and Stadler, 2018; Shirreff et al.,
2013), and for testing hypotheses about the evolutionary forces that have seeded the patterns
in the traits observable nowadays (Butler and King, 2004; Hansen and Martins, 1996; Pennell
and Harmon, 2013).

With ever growing tree size and scope of the phylogenetic analysis, it is unlikely that
a single regime of evolution described by a single model could have driven the changes
in the traits across the entire tree. Such a model would have too low of a resolution to
accommodate the inherent heterogeneity in the evolutionary process. Even worse, fitting a
misspecified model to a large phylogeny is prone to inferring statistically significant, but
strongly biased parameter values, due to their tendency to "compensate" for the modeling
error (Cooper et al., 2015; Mitov and Stadler, 2018). There is no biological reason to constrain
the change of a model regime to a single or a few model parameters, nor is there any reason
to restrict the change to a single type of model. However, to the best of our knowledge, all
current implementations inferring phylogenetic models with shifts, impose such restrictions,
motivated mainly by computability issues (Bastide, Mariadassou, and Robin, 2017; Bastide
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et al., 2018; Beaulieu et al., 2012; Eastman et al., 2011; Ingram and Mahler, 2013; Khabbazian
et al., 2016; O’Meara et al., 2006; Uyeda and Harmon, 2014)

In this work, we propose a method for overcoming the computational complexity of fitting
jointly a set of different model types with independent parameter sets to phylogenetically
linked comparative data. Our approach relies on a sub-family, hereby denoted GLInv, of the
Gaussian phylogenetic models, with the transition density exhibiting the properties that the
expectation depends Linearly on the ancestral trait value and the variance is Invariant with
respect to the ancestral value. In a related work, we have shown that the likelihood of such
models can be calculated in time proportional to the number of nodes in the tree (Mitov et al.,
2018). Here, we generalize this fast likelihood calculation algorithm to mixed phylogenetic
models over the GLInv-family, which we denote MGPMs. We develop a new algorithm for fast
maximum likelihood search of an optimal MGPM fit to a dataset of possibly incomplete mea-
surements from several traits of present day species and/or fossilized specimens, annotating
the tips of a time calibrated tree.

A prominent example with a long history in evolutionary biology is the comparative anal-
ysis of brain- and body-mass data from mammals (Jerison, 1973; Snell, 1891). In the quest
for the origin of intelligence, it has been shown that, in mammals, brain mass has a nega-
tive allometric relationship with body-mass, meaning that brain-mass tends to scale at lower
proportions with respect to body-mass (Boddy et al., 2012; Jerison, 1973; Montgomery et al.,
2010; Snell, 1891). Many studies have compared this allometry between separate mammal
clades (see, e.g. (Boddy et al., 2012; Montgomery et al., 2010) and references therein). How-
ever, the choice of the groups to be compared in these studies has been driven mainly by
the established taxonomic ranking (i.e. order, family, genus) and by the researcher’s intuition
about which groups "could" be different. Moreover, most of the studies in the past have ne-
glected the phylogenetic relationship between the species within a group, which is a known
source of bias in comparative regression analysis (Boddy et al., 2012; Felsenstein, 1985). Here,
we show that the MGPM enables a data driven identification of such distinct groups. We
have performed an MGPM ML fit to body- and brain-mass data from 629 extant mammal
species representative of 21 orders, extracted from the previous works of (Bininda-Emonds
et al., 2007) and (Boddy et al., 2012). This revealed a strong statistical support for an MGPM
with 12 distinct regimes (11 shifts) comprising both, BM as well as several parameterizations
of the OU model. Conditioned on the inferred model parameters, we have reconstructed the
ancestral history of the brain-body mass allometry for the past 160 Ma.

This article is organized as follows. In New approaches, we formulate the so-called inter-
model shift problem, i.e. the optimization problem aiming at finding the optimal model
shifts in a phylogenetic tree with multivariate trait measurements associated with its terminal
nodes (tips). Then, we briefly describe our proposed solution based on the MGPM. In Results,
we report the analysis of the Mammal data. In Discussion, we provide an interpretation of
the results and discuss potential issues of the method and challenges for future work. A
detailed description of the methods is provided in Materials and Methods and in Appendix.
In Appendix 7.H, we report additional results from a validation test based on simulated data.

7.2 new approaches

7.3 the inter-model shift problem

Given number of traits k, a tree T representing the evolutionary relationship of N species
(tips), and a family of k-variate phylogenetic models M, a mixed phylogenetic model on T
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is defined as a configuration of shift points and mapped models, S = {< 0, m0 >,< s1, m1 >
, ...,< sR, mR >}, where < 0, m0 > denotes the initial model m0 ∈ M starting from the root
(0) and modeling the trait evolution on the descending lineages until reaching a tip from T
or another shift from S; each other shift < si, mi > denotes a point si on a branch of T and a
model mi ∈ M, assuming the trait values at the point si as initial state, and again modeling
the evolution on the subtree with root si, Tsi , until reaching a tip or a shift (fig. 7.1). We
call “shift-point configuration” the set of points where the shifts occur, i.e. {0, s1, ..., sR}. We
denote by S(T ,M) the family of all mixed phylogenetic models over T andM, with mixed
referring to several models on a single tree. The “inter-model shift problem” is the problem
of finding the mixed phylogenetic model S∗ ∈ S(T ,M) that fits "best" to data X consisting
of trait values at the tips of T . We call S∗ the best inter-model shift configuration.

Defining "best fit" in the statistical sense is not straightforward, due to the notorious prob-
lem of "overfitting" coming along with complex parametric models. In this work, we use the
Akaike information criterion (AIC) as a score function penalizing the maximum likelihood
(ML) fit of a model, based on the number of free parameters. We note, however, that there is
no general agreement on a best scoring function, in particular, for small datasets, where the
commonly used AIC and AICc have been shown to be biased towards more complex models
(Ho and Ané, 2014b).

7.4 dealing with the computational complexity

With a few exceptions (Zwiernik, Uhler, and Richards, 2014), maximizing the likelihood
of a mixed phylogenetic model is a multivariate non-convex optimization task involving
numerous calculations of the model likelihood for the given tree and data. Furthermore,
searching for the best inter-model shift configuration is hard, because the number of possible
configurations grows exponential with respect to the number of tips in the tree. Our approach
to this complexity is two-fold:

1 . the GLInv family of models . In particular, we restrict M to a sub-family of the
Gaussian phylogenetic models, denoted GLInv. Gaussian phylogenetic models are popular
in comparative analysis, because there is a theoretical mapping between microevolutionary
forces, such as neutral drift and stabilizing selection, and some Gaussian models, such as
BM and OU (Hansen and Martins, 1996). These two models belong to a sub-family of the
Gaussian phylogenetic models, GLInv, for which it is possible to calculate the likelihood in
time proportional to the size of the tree (Mitov et al., 2018):

Definition 3. We say that a phylogenetic trait model belongs to the GLInv family if it satisfies the
following

1. after branching the traits evolve independently in the two descending lineages,

2. the distribution of the trait ~X, at time t conditional on the value at time s < t is Gaussian with
the mean and variance satisfying

a) E
[
~X(t)|~X(s)

]
= ~ωs,t + Φs,t~X(s)

(expectation depends linearly on the ancestral trait),

b) Var
[
~X(t)|~X(s)

]
= Vs,t

(variance is invariant with respect to the ancestral trait, see also fig. 7.2 for an illustration),
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1: OUF 

H = 



−0.021 0.025
−0.041 0.048



, Θ = 



2.865
0.816



, Σ = 



0.009 0.003
0.003 0.002








2: OUE 

H = 



0.005 −0.005
−0.005 0.004



, Θ = 




0.692
−1.158



, Σ = 



0.006 0.003
0.003 0.002








3: OUF 

H = 



0.430 −0.545
0.267 −0.333



, Θ = 



3.381
1.644



, Σ = 



0.025 0.011
0.011 0.005








5: OUF 

H = 



0.000 0.011
0.000 0.009



, Θ = 



5.239
3.800



, Σ = 



0.023 0.013
0.013 0.008








4: OUE 

H = 



0.637 −0.671
−0.671 0.803



, Θ = 




1.052
−0.514



, Σ = 



0.013 0.000
0.000 0.009








6: OUD 

H = 



1.886 0.000
0.000 0.739



, Θ = 




0.873
−0.723



, Σ = 



0.305 0.133
0.133 0.058








7: OUF 

H = 




0.006 0.003
−0.030 0.030



, Θ = 



4.790
3.108



, Σ = 



0.012 0.004
0.004 0.002








9: BMB 

Σ = 



0.005 0.003
0.003 0.002








8: OUE 

H = 



0.029 −0.055
−0.055 0.103



, Θ = 



3.131
1.011



, Σ = 



0.001 0.001
0.001 0.002








10: OUE 

H = 



0.129 0.040
0.040 0.094



, Θ = 



3.788
1.950



, Σ = 



0.012 0.005
0.005 0.003








11: BMB 

Σ = 



0.005 0.004
0.004 0.003








12: OUF 

H = 



0.866 −1.631
0.304 −0.542



, Θ = 



2.418
0.498



, Σ = 



0.041 0.006
0.006 0.002








X0 = 



1.904
−0.920
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Figure 7.1: An MGPM reconstruction of the body- and brain-mass evolution in mammals A: A phy-
logenetic tree of 629 extant species representative of 21 mammal orders (subsampled from
(Bininda-Emonds et al., 2007)). The colours with numbers from 1 to 12 denote the model
regimes. B: A pruned (back-bone) variant of the tree in A showing the selected model
type and the inferred ML parameters below the shift point for each regime. The plots
above the lineages depict the evolution of the trait distribution on each backbone lineage,
conditioned on the inferred ML parameters in the MGPM fit. These inferred distributions
should be interpreted as the expectation for the corresponding ancestral species under
the hypothesis that the inferred MGPM model was the true one. At the tips, this inferred
distributions are compared to the empirical trait distributions (scatter plots) localised over
the tips belonging to each regime. The ancestral node labels annotating the regimes were
provided by Prof. Dr. Jörg Stelling (personal communication). C: Description for the dis-
tribution plots in B. D: A visual hint showing some of the mammal species under each
regime; artistic images for the species in D (sources and licenses listed in Appendix 7.G).
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Figure 7.2: Evolution of brain- and body-mass under selected regimes of the MGPM fit to the mam-
mal data. Each black point positioned on a regular grid represents the mean value for
a given species at some time 0. The corresponding red point (connected by a colored
segment) shows how the mean is expected to evolve under the model regime, within a
specified time period, ∆t. An ellipse around the red-point denotes the 95% contour of the
expected normal distribution. If all organisms of the species are divided into isolated sub-
populations evolving independently under the corresponding model for a period ∆t, at
the end of the period, the mean of the sub-populations’s mean-values would be approxi-
mated by the red point, and approximately 95% of the sub-populations would have their
mean values within the ellipse. Rows of panels correspond to different model regimes.
Columns from left to right correspond to different time periods. Note that within each
panel, the ellipses have the same shape, size and orientation, in accordance with property
2(b), Defn 3. Figures S3-S4) show the corresponding plots for all 12 regimes in the MGPM
fit to mammal data.

for some vector ~ωs,t and matrices Φs,t, Vs,t which can depend on s and t but don’t depend on
~X(s).

In (Mitov et al., 2018), we have proven that for any tree and any phylogenetic model
satisfying Defn. 3, it is possible to calculate the likelihood of the model, given multi-trait data
for the tips with some tips possibly missing some trait values, through a pruning algorithm,
based on analytical integration over the unobserved trait values at the internal nodes of the
tree. Here, we have extended this algorithm to support mixed phylogenetic models over the
GLInv-family, meaning the type of model may change at inter-model shift points.

2 . fast model selection. As a next step, we developed an algorithm searching for
an optimal mixed Gaussian phylogenetic model (MGPM) over a finite subsetM⊂ GLInv. To
reduce the search space of mixed phylogenetic models, S(T ,M), we use several "heuristics":

(A) Reducing the number of candidate shift-point configurations:

(A.1) Motivated by the usual lack of statistical power for inferring the precise location or
the presence of multiple shifts within a branch (Bastide et al., 2018; Khabbazian et
al., 2016), we assume that a shift-point can only occur at the beginning of a branch.
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We call the end-node of such a branch a “shift-node”. Following this assumption,
the number of shift-point configurations is reduced to 2M−1, with M denoting the
number of nodes in the tree.

(A.2) We introduce a threshold, q, on the minimal number of tips "visible" from an an-
cestor shift-node, where visibility means that there is no other shift occurring on a
path from the shift-node to any of these tips. Indirectly, this limits the maximum
number of shifts to no more than N/q. However, specifying q instead of a maxi-
mum number of shifts has a performance benefit, because even a small value of
q (e.g. less than 5% of the tree size) effectively reduces the space of possible shift
configurations. As a downside, unlike a limit on the maximum number of shifts,
specifying q hinders the detection of shifts visible from less than q tips. This is
acceptable, given our goal is to detect patterns in big groups of tips, rather than
outliers.

(A.3) The best configuration of a given size P (number of shift-nodes) can be obtained
from the best configuration of size P− 1 by adding one of the other possible shifts,
nameyly, the one resulting in the best AIC score. This greedy assumption pro-
vides a stop criterion for the search procedure, namely, when a configuration has
been reached, which’s score cannot be improved by inserting a new shift. While
not valid in general, this heuristic has proven useful in numerous previous imple-
mentations of stepwize AIC optimization on tree models, e.g. (Alfaro et al., 2009;
Ingram and Mahler, 2013).

(B) Reducing the number of possible model type mappings for a given shift-point con-
figuration. For each candidate shift-point configuration comprising P shifts, i.e. P + 1
regimes in total, there are |M|P+1 possible MGPMs. To reduce this number, we imple-
ment a heuristic to be applied when P exceeds some user defined number:

(B.1) In the optimal MGPM, the best model fromM associated with a given shift-node
i is likely to be the best model fitting to the clade descending from i. Thus, we
reduce the set of candidate model types to be mapped to a candidate shift-node,
i, to the set {Mcurrent−best, Mclade−best}, Mcurrent−best denoting the model mapped to
i in the currently found best MGPM, Mclade−best denoting the best model mapped
to i in a single (non-mixed) model fit to that clade.

Using these heuristics, we implemented a parallel recursive clade partition search algo-
rithm solving the inter-model shift problem by returning an (approximate) optimal inter-
model shift configuration for a given tree and multivariate trait data at the tips (Appendix
7.A, algorithm 7.1, figs. S1-S2).

7.5 results

7.5.1 An MGPM analysis of the brain-body allometry in mammals

We performed an MGPM fit to the biggest publicly available phylogenetic tree of mammal
species with available body- and brain-mass measurements (fig. 7.1A). This is a subtree of
629 extant species with ancestral nodes spanning 166 Ma, which were extracted from the
time-calibrated mammal tree published in (Bininda-Emonds et al., 2007). Curated body- and
brain-mass data for the species have been provided by previous works (see (Boddy et al.,
2012) and references therein). As a preprocessing step aiming to improve the time-resolution
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of the identified model-shifts we repeatedly halved, through insertion of singleton nodes, all
branches in the tree longer than 16 Ma, until all branches were shorter than 16 Ma. In this
way, we obtained an ultrametric tree of 629 tips, and 1063 internal nodes, of which 494 were
annotated ancestral bifurcating or multi-furcating nodes (Bininda-Emonds et al., 2007) and
569 were artificially inserted singleton nodes.

The MGPM fit was done over six candidate model types ranging from a model of neu-
trally and independently evolving traits to a complex model of evolution under selection
and causal relationship between the traits. All of these model types were defined as specifi-
cations of the BM and the OU models (see Materials and Methods). Further in the text, we
denote these model types by BMA, BMB, OUC, OUD, OUE, OUF or by the capital letters A− F.
The best model fit found by the recursive clade partition algorithm had AIC∗ = −240.57, log-
likelihood ``∗ = 235.29 and a total of p = 115 parameters, specifying 11 shift-points and a
total 12 regimes. As an additional test for possible overfitting, we conducted a MGPM fit over
the models {A, ..., E} and a fit of the scalar OU model with shifts in the long-term optimum
described in (Bastide et al., 2018). The MGPM over the models {A, ..., E} produced a fit with
11 regimes (10 shifts) and AIC=-193.43. The scalar OU model produced a fit with 3 regimes
(2 shifts) and AIC=+42.36, which was sub-optimal compared to the best single regime OUF-
model (compare AIC value in iteration 1, fig. S1). Based on the significant AIC difference in
favor of the MGPM over the models {A, ..., F}, we retained this model for the interpretation
of results.

Figure 7.1B shows a summary of the identified model regimes in the best MGPM fit. Based
on the ML estimates for the root node (X0) and for the model parameters in each regime,
we have reconstructed the expected ancestral distributions at fixed time-points along each
lineage (fig. 7.1B, see also Appendix 7.D). A visual interpretation of the inferred model pa-
rameters for each regime is shown in figs. 7.2, S3-S4.

Under the hypothesis that the inferred MGPM fit is the true model for the data, these
distributions represent the expectation for a sample of species evolving independently since
the root of the tree. Thus, the least squares regression between the two traits in these distri-
butions is correct with respect to possible correlations caused by shared ancestry. We notice
that, with few exceptions (HystricognathiG1, MuridaeG1, CricetidaeG1), these expected re-
gressions agree closely with the empirical regression lines calculated over the species within
each regime (see distribution plots at the tips in fig. 7.1B), with empirical meaning that we
simply calculated the regression line for the trait values across tips ignoring any phylogenetic
relatedness. Conversely, there is a well pronounced difference between the regression lines
in different regimes (fig. 7.1B).

Looking back in time, the inferred model suggests the hypothesis that, with slope=0.4, the
brain-body-mass allometry has been far more pronounced in the mammal ancestors 160 Ma
ago (fig. 7.1B). This slope has increased gradually through time until reaching nowadays
levels of ≈ 0.75 for all species in regime 1 (fig. 7.1B). The model shifts are associated with
significant changes in the direction and the magnitude of selection forces (figs. 7.1B, 7.2, S3-
S4). Regimes 1, 2, 5 and 8 were characterized by the lack of a single long term focal point (figs.
S3-S3). In contrast, for regimes 4, 6, 10 and 12, the model suggests convergence to a global
mean point within less than 100 Ma (figs. S3-S4). Considering figs. 7.2, S3-S4, it is possible
to hypothesize about the direction and strength of selection acting at different points in the
phenotype plane. For example, in regime 1, a species weighing 10 kg and with brain-mass
0.3 kg tends to evolve towards smaller masses for both, body and brain (fig. 7.2). Conversely,
in regime 2, the same species tends to evolve towards smaller brain but bigger body mass
(fig. 7.2).
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7.5.2 Tests on simulated data

Using the models A− F, we conducted a simulation study on random ultrametric and non-
ultrametric trees of up to 638 tips. The simulations confirmed that our MGPM fitting proce-
dure correctly identifies clusters in the tree associated with different evolutionary regimes,
and accurately discriminates between OU and BM regimes of evolution. We observed a drop
in the predictive power with respect to the exact type of model. For example there was a ten-
dency towards favouring simpler versions of the OU model with symmetric selection strength
matrix, H, to OU models with asymmetric H (see Materials and Methods). A detailed report
of these simulations is provided in Appendix 7.H, figs. S5-S16, table S1.

7.6 discussion

The idea of jointly fitting different types of Gaussian models dates back at least since the
work of Slater 2013 Slater, 2013, where he measured the statistical support for a shift from
an OU to a BM process in the evolution of mammal body size occurring at the end of the
Mesozoic (but see Slater, 2014). Later, Clavel et al. implemented a non-pruning algorithm for
multivariate likelihood calculation for shifts between BM, OU and the early burst (EB) model
of adaptive radiation (Clavel, Escarguel, and Merceron, 2015). These works assume a known
point in time where a "global" shift occurs on all lineages of the tree. The more ambitious task
of finding "local" inter-model shifts occurring on individual branches has, to our knowledge,
not been addressed, although many authors have proposed methods for finding local intra-
model shifts in some of the parameters of the OU-model, and under various simplifying
assumptions including tree ultrametricity, single trait or independently evolving multiple
traits, shared or fixed parameter values between model regimes (e.g. a scalar OU model with
a global (scalar diagonal) selection strength matrix and drift matrix for all regimes) (Bastide,
Mariadassou, and Robin, 2017; Bastide et al., 2018; Beaulieu et al., 2012; Butler and King,
2004; Eastman et al., 2011; Ingram and Mahler, 2013; Khabbazian et al., 2016; O’Meara et al.,
2006; Uyeda and Harmon, 2014).

With respect to the above works, solving the inter-model shift problem over S(T ,GLInv)
should provide a wide modeling possibility for evolutionary biologists. Apart from BM and
OU, the GLInv family includes many popular models of continuous trait evolution, such as BM
and OU models with a linear trend in the (long term) mean, jump-enabled BM or OU models
of punctuated equlibrium, OU models with separate selection strength and decorrelation
rate and EB models (Mitov et al., 2018; Pennell and Harmon, 2013). However, the inclusion
of these model types in the MGPM fit should always be subjected to a consideration of the
model identifiability in the context of the observed data.

Understanding the identifiability of phylogenetic models in the multiple regime setting is
an open problem. This problem consists in the possibility for different shift configurations,
model mappings or parameter values to fit equally well to a given tree and data. Previous
works have made a progress in understanding the identifiability of single regime or scalar OU
models (Bastide et al., 2018; Ho and Ané, 2014b; Khabbazian et al., 2016). For example, (Ho
and Ané, 2014b) showed analytically that in a single regime OU model on an ultrametric tree,
it is not possible to infer both, the root value ~X0 and the long-term optimum~θ. This statement
may not hold any more in a multiple regime model setting allowing for different evolutionary
rates among the regimes. Such a model can be interpreted as a scaling by different factors
of the branch lengths in the different regimes, resulting in a non-ultrametric tree, with the
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scaling factors being informed by the evolutionary rates. Thus, the joint inference of ~X0 and
~θ in the MGPM fit on an ultrametric tree could be justifiable in the case of several regimes.

Entangled with the identifiability issue is the problem of quantifying the uncertainty in
an MGPM fit. Theoretically, this could be approached in a Bayesian way using reversible-
jump Metropolis sampling (Uyeda and Harmon, 2014). However, the high dimensionality of
the MGPM, combined with the poor potential for parallelizing the sampling pose a serious
computational challenge that goes beyond the scope of this work. Therefore, we caution the
reader that our present solution is limited to providing a single (possibly local) optimal point
in the vast space of MGPM models. The safest way to interpret this point estimate, as well as
any derived quantities such as the ancestral trait distributions (fig. 7.1), is to consider these
as evolutionary hypotheses that have to be tested in the light of competing methods or novel
data.

7.7 materials and methods

7.7.1 Candidate model types for the mammal data

We defined six candidate models based on the k-variate Ornstein-Uhlenbeck (OU) process,
defined by the following stochastic differential equation:

d~X(t) = H
(
~θ − ~X(t)

)
dt + ΣCdW(t). (7.1)

In the above equation, ~X(t) is a k-dimensional real vector, H is a k × k-dimensional eigen-
decomposable real matrix, ~θ is a k-dimensional real vector, ΣC is a k × k-dimensional real
positive definite matrix and W(t) denotes the k-dimensional standard Wiener process. Seen
as a branching stochastic process, where each branching event gives rise to two independent
instances of the process starting from the value of ~X at the branching point, eq. 7.1 satisfies
Defn. 3 (Mitov et al., 2018). Specifically, the elements ~ωs,t, Φs,t and Vs,t from property 2 in
Defn. 3 are given by (Mitov et al., 2018):

~ωs,t =

(
I− Exp

(
− (t− s)H

))
~θ

Φs,t = Exp(−(t− s)H)

Vs,t =
∫ t−s

0 Exp(−vH)(ΣCΣT
C)Exp(−vHT)dv

(7.2)

Biologically, ~X(t) denotes the mean values of k continuous traits in a species at a time t
from the root, the parameter Σ = ΣCΣT

C defines the magnitude and shape of the momentary
fluctuations in the mean vector due to genetic drift, the matrix H and the vector ~θ specify
the trajectory of the population mean through time. When H is the zero matrix, the process
is equivalent to Brownian motion and the parameter ~θ is irrelevant. When H has strictly
positive eigenvalues, the population mean converges in the long term towards ~θ, although
the trajectory of this convergence can be complex (see figs. 7.2, S3, S4). In all parametrizations,
we restrict H to have non-negative eigenvalues - a negative eigenvalue of H transforms the
process into repulsion with respect to~θ, which, while biologically plausible, is not identifiable
in a ultrametric tree. The six candidate models are specified below:

• BMA (H = 0, diagonal Σ): BM, uncorrelated traits;

• BMB (H = 0, symmetric Σ): BM, correlated traits;
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• OUC (diagonal H, diagonal Σ): OU, uncorrelated traits;

• OUD (diagonal H, symmetric Σ): OU, correlated traits, but simple (diagonal) selection
strength matrix;

• OUE (symmetric H, symmetric Σ): An OU with non-diagonal symmetric H and non-
diagonal symmetric Σ;

• OUF (asymmetric H, symmetric Σ): An OU with non-diagonal asymmetric H and non-
diagonal symmetric Σ;

7.7.2 Implementation

The technical details of the recursive clade partition search, the AIC score, the model parametriza-
tions and the calculation of the expected distributions and linear regression coefficients in the
mammal data are described in Appendix, sections 7.A-7.E. The pruning algorithm for fast
likelihood calculation of MGPM models over the GLInv-family was implemented within the
R-package PCMBase (https://github.com/venelin/PCMBase), using internal calls to its com-
panion Rcpp extension PCMBaseCpp (https://github.com/venelin/PCMBaseCpp) Mitov et
al., 2018 and the SPLITT library for tree traversal (https://github.com/venelin/SPLITT) (Mi-
tov and Stadler, 2017b). Gradient descent likelihood optimization with multiple calls to op-
tim from random starting parameters was implemented within the R-package OptimMCMC
(https://github.com/venelin/OptimMCMC). The recursive clade partition algorithm was
implemented in the R-package PCMFit (https://github.com/venelin/PCMFit). The scripts
and the data for the mammal analysis and the simulations were implemented in the R-
package TestPCMFit (https://github.com/venelin/TestPCMFit). These packages rely on nu-
merous third party libraries listed in Appendix 7.F.
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appendix

7.a recursive clade partition search for an optimal mgpm

In algorithm 7.1, we provide a pseudo-code description of the recursive clade partition search.
To understand how the algorithm works, it may be useful to follow the search path for the
optimal MGPM fit to the mammal tree shown on figs. S1-S2. We note that, a shift occurs at
the beginning of a branch leading to a so called "shift-node". We call "selected nodes" the
nodes that have been selected as shift-nodes in the current best MGPM.

The algorithm starts with a ML fit of each model type to each clade of at least q = 20
tips, including the entire tree. The results of these model fits are stored in a data-table, which
is used as a source for proposals of initial parameters in subsequent MGPM ML fits. Then,
the algorithm initiates a queue of "partition root", starting with the root of the tree. Partition
root are equivalent to already selected shift-nodes. In each iteration of the main loop (line 12,
algorithm 7.1), the partition root at the head of the queue is taken, and an attempt is made
to improve the current best MGPM model by inserting a shift at one of its descendants. We
call "candidates" the descendant nodes of a partition root, which have not been cut-out by
(i.e. do not descend from) a previously selected shift-node and which satisfy the requirement
that, after placing a shift on their corresponding branch, no regime (color) in the resulting
tree would have less than q tips.

Each panel on figs. S1-S2 shows the state at the beginning of a main-loop iteration. This
state comprises the iteration number (number in parentheses), the AIC, log-likelihood and
total number of parameters for the current best MGPM, the currently selected shift-nodes
(colored points), the partition root (a colored point with a number equal to the iteration
number), the candidate nodes (grey points) and the candidate model types for both, the
selected and the candidate nodes (sets of capital letters in braces above the corresponding
nodes). During the iteration, a maximum likelihood fit is performed for all MGPMs formed
by adding one candidate (grey) node to the set of selected (colored) nodes and for all possible
model mappings on this node and the currently selected shift-nodes. Note that this is a
greedy step following heuristic A.2 in the main text. As an option it is possible to relax
this heuristic by considering combinations of up to a user-specified number of candidate
nodes. However, this would considerably slow down the search. The set of possible model
mappings for a configuration of shift-nodes can be formed as the Cartesian product of all
candidate model types taken for each node. This, however, would result in an exponentially
growing number of possible mappings. Thus, a reduction is made by using the heuristic B.1
in the main text. For the partition root, the heuristic B.1 is neglected and all possible model
types are considered. For the other nodes, up to 2 model types are considered (the best model
fit to the clade starting at the node vs the model assigned to the node in the current best-fit).
This effectively reduces the number of possible model mappings, although, in the worst case
this number would still be exponential, i.e. in the order of 2s, where s denotes the number
of shift-nodes in the shift configuration. If during the main-loop iteration the AIC has been
improved by inserting a new shift-node, this shift-node, together with the partition root are
inserted at the end of the queue, so that a further partition from these nodes can be explored
in a next iteration. The algorithm ends when the partition queue gets empty.
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Algorithm 7.1 : Recursive clade partition search for an optimal MGPM
Input :
T : a timed tree with M nodes of which N are tips;
X ∈ (R∪ {NA, NaN})k×N : data for k traits associated with the tips, missing values or non-existing traits allowed;
M⊂ Gk , |M| < ∞: a finite set of k-variate Gaussian phylogenetic models;
MLE:

⋃
i∈{0,N+1,...,M−1} Si(Ti ,M) −→ {< ``∗, Θ∗ >}: a maximum likelihood estimator getting as input a mixed

Gaussian phylogenetic model (a shift configuration and model mapping) on (a subtree of) T and returning the
corresponding maximum likelihood, ``∗, and point estimate, Θ∗, of model parameters contained in S;
SCORE: {< S, `` >} −→ R: a scoring function, penalizing a maximum likelihood value `` based on the complexity,
e.g. the number of free parameters of the model S;
Output : A quasi-optimal MGPM, S∗ ∈ {S(T ,M)}, with respect to SCORE.

Data :
TableFits: a table with columns tree, model, Θ and q, containing (an encoded/compressed version of) the tree, the
MGPM the parameter-values and the penalized score for all MLEs produced during the search;
QueuePartitionRoots: a first-in-first-served list (queue) of the nodes used as clade-partition roots during the search;
S∗: the current MGPM on T with best score;

1 Step 1. Initialization. Fit each individual model to each clade in T .
2 foreach i ∈ {0, N + 1, ..., M− 1} do
3 foreach m ∈ M do
4 Si,m ←− {< i, m >};
5 < ``∗i,m, Θ∗i,m >←− MLE(Si,m; Ti ,Xi ,M);
6 q∗i,m ←− SCORE(Si,m, ``∗i,m);
7 Add to TableFits

〈
tree = Ti , model = Si,m, Θ = Θ∗i,m, q = q∗i,m

〉
;

8 Step 2. Recursive clade-partition search for the optimal MGPM on T .
9 Step 2.1. Initialize QueuePartitionRoots with root-node and the best individual model fit to T found in TableFits.

10 Add to QueuePartitionRoots < 0 >;
11 S∗ ←− {model in TableFits with the best score on the whole tree};

// Main loop
12 while QueuePartitionRoots is not empty do
13 Step 2.2. Get the node at the head of the queue: this node is the partition root for the iteration.
14 j←− PopFrontElement(QueuePartitionRoots);
15 Step 2.3. Extract the subtree of T containing all tips descending from j without an intermediate node from S∗ on their path

to j.
16 T ′j ←− ExtractClade(T , j);
17 foreach l ∈ Nodes(S∗)\{j} do
18 if l ∈ Nodes(T ′j ) then
19 T ′j ←− RemoveClade(T ′j , l);

20 PartitionNodes←− Nodes(Tj)
′;

21 Step 2.4. Make a list of all shift configurations including Nodes(S∗) and a node from PartitionNodes.
22 P←− φ;
23 foreach p ∈ PartitionNodes do
24 P←− P

⋃ {
Nodes(S∗) ∪ {p}

}
;

25 Step 2.5. Restrict the set of candidate models for each node in S∗ ∪ PartitionNodes\{j} to at most two models; try all
models for the node j.

26 foreach l ∈ S∗ ∪ PartitionNodes\{j} do
27 Ml ←− {model assigned to l in S∗} ∪ {best model fit to clade l};
28 Mj ←−M;
29 Step 2.6. MLE fits to all shift configurations in P and possible model mappings usingMl , l ∈ P
30 foreach Sp ∈ P do
31 foreach Sm ∈ ∏l∈SpMl do
32 S←− {< Sp, Sm >};
33 < ``∗S, Θ∗ >←− MLE(S; T ,X ,M);
34 q∗ ←− SCORE(S, ``∗S);
35 Add to TableFits

〈
tree = T , model = S, Θ = Θ∗, q = q∗

〉
;

36 Step 2.7. If step 2.6 has found a fit with a better score than the score of S∗, update S∗ and add its nodes to the queue.
37 if TableFits[tree == T , Min(q)] < SCORE(S∗, ``S∗ ) then
38 S∗ ←− BestModel(TableFits[tree == T ]);
39 Add to QueuePartitionRoots Nodes(S∗);

40 return S∗;
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7.a.1 Likelihood optimization

We used calls of the R-function optim specifying the L-BFGS-B algorithm for optimizing
the likelihood of each candidate MGPM. To reduce the risk of getting stuck in local optima,
multiple runs have been performed starting from different locations in the parameter space.
These starting locations were specified as follows:

• Clade fits: for the initial step of the algorithm, in which each model type is fit to each
clade of not less than q tips, the likelihood of the MGPM was evaluated at a large num-
ber (in this case 200’000) of parameter points drawn at random from a uniform distri-
bution defined by user-specified limits (see Parameter limits in the Model parametriza-
tions section 7.C). Then the points were sorted in order of decreasing likelihood and
optim was run for the top 400 points.

• Main loop fits: for the main loop MGPM fits, we implement a similar procedure as
for the clade fits, but with reduced number of likelihood evaluations (4000) and 10

optim calls. The starting locations have been chosen from a mixture of randomly drawn
parameters and slightly modified (jittered) optimum points from the clade fits for each
shift-node and mapped model type.

7.a.2 Parallel execution

We implemented parallel execution of the nested foreach loops in step 1 (line 2) and step
2.6 (line 28) in algorithm 7.1. Parallelization was implemented within the PCMFit R-package
via calls to the R-packages foreach (“foreach: Foreach Looping Construct for R”), iterators
(“iterators: Iterator Construct for R”) and doMPI (“doMPI: Foreach Parallel Adaptor for the
Rmpi Package”). The MGPM fit for both the mammal data and the simulated data (Appendix
section 7.H) was performed on the Euler cluster managed by the HPC team at ETH Zurich.
For the analysis of the mammal dataset the search algorithm finished within 24 hours, run-
ning on 300 cores (299 MPI worker nodes). For the analysis of the simulated data, the search
algorithm finished within 24 hours for 159 out of 192 datasets, running on 100 cores (99 MPI
worker nodes). The remaining 33 datasets were only for big trees (N = 638 tips, see section
7.H) and took between two and four days.

7.b calculating the aic of a mgpm ml fit

For a ML fit of the MGPM model, the Akaike information criterion is given by the formula

AIC = −2``∗ + 2p (S1)

where ``∗ denotes the maximum log-likelihood and p denotes the number of the parameters.
For the MGPM on a fixed tree and data, we define p as the total number of numerical model
parameters, that is, the initial trait vector, ~X0 together with the parameters for each model
regime, plus [2 ∗ (R− 1)+ 1], where R denotes the number of regimes. In this way, every shift
counts as 2 added parameters (shift location and mapped model), and a single parameter is
counted for the model-type in the root-regime.
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7.c model parametrizations

7.c.1 Transformations for the matrix parameters Σ and H

We used transformations on the matrix parameters Σ and H to prevent the likelihood op-
timization from hitting on invalid parameter values (e.g. non-symmetric or non-positive-
definite matrix Σ, or negative-definite matrix H). We note that the same techniques described
briefly below have been used in other OU implementations, e.g. (Bartoszek et al., 2012; Clavel,
Escarguel, and Merceron, 2015).

For the unit-time variance-covariance matrices, Σ, which are symmetric positive definite
by definition, we used the parametrization:

Σ = ΣCΣT
C, (S2)

where ΣC denotes the upper-triangular Choleski factor of Σ (Bartoszek et al., 2012; Clavel,
Escarguel, and Merceron, 2015). Note that by specifying positive values for the diagonal
elements of ΣC, we guarantee that Σ is positive definite. Further, the fact that ΣC is triangular
guarantees the symmetry of Σ.

For the OU selection strength matrices H, which we require to have non-negative eigenval-
ues without necessarily being symmetric (note that negative eigenvalues result into repulsion
from the ~θ), we used the Schur parametrization following (Clavel, Escarguel, and Merceron,
2015). Specifically, we define a k× k-dimensional matrix HS as follows:

• the upper triangle of HS, excluding the diagonal, specifies k(k− 1)/2 rotation angles for
Givens rotations (Golub and Van Loan, 2012) to obtain a k× k-dimensional orthoganal
matrix Q;

• the lower triangle of HS including the diagonal defines a k× k triangular matrix T.

Then, H is obtained from Q and T as follows (Bartoszek et al., 2012; Clavel, Escarguel, and
Merceron, 2015):

H = QTTQT (S3)

The matrix H calculated in this way has all of its eigenvalues equal to the elements on
the diagonal of HS (Bartoszek et al., 2012; Clavel, Escarguel, and Merceron, 2015). Thus, by
restricting the diagonal of HS to non-negative values, we guarantee that H will have all of
its eigenvalues non-negative. Further, if HS is diagonal, then so is be the matrix H; if HS is
upper triangular, then T is diagonal and the resulting matrix H is symmetric. Finally, if HS is
a full matrix, i.e. neither diagonal nor triangular, then the resulting matrix H is asymmetric.

7.c.2 Parameter limits

Since we used a the L-BFGS-B algorithm for gradient-descent optimization (Byrd et al., 1995),
we need to specify limits for the model parameters. We did this as follows:

• 0.0 6 ΣC,ii 6 1, i ∈ {1, 2} for all model types;

• 0.0 6 ΣC,12 6 1 for all model types;

• 0.0 6 HS,ii 6 10, i ∈ {1, 2} for all OU model types;
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• −10.0 6 HS,12 6 10.0 for the OUE model type (keeping HS,21 = 0 to ensure symmetry
of the transformed matrix H);

• −10.0 6 HS,ij 6 10.0, i 6= j ∈ {1, 2} for the OUF model type;

• 0.0 6 θ1 6 7.8 according to the range of lg-body-mass in grams in the mammal dataset;

• −1.2 6 θ2 6 3.8 according to the range of lg-brain-mass in grams in the mammal
dataset.

7.d calculating expected trait distributions under the mgpm

We use the fact that, under an MGPM model of the evolution of k traits along a tree T , the
expected distribution of the trait values at any time point, i, on any branch of T is a k-variate
Gaussian distribution. The mean k-vector and the k × k variance-covariance matrix of this
distribution are functions of the initial (root) trait vector, ~X0 and the model parameters and
branch lengths for the sequence of regimes on the path from the root to i. These functions
are calculated by applying Defn. 3 in the following recursive fashion:

1. Node 0 (the root of T ) is associated with a k-variate Dirac’s δ with infinite density over
the root-value and 0 density elsewhere:

E
[
~X0

]
= ~X0,

Var
[
~X0

]
= [0]k×k.

(S4)

2. For any other point i, let j be the closest ancestor of i and t and s be their corresponding
time distances from the root. Then the expected distribution of the trait vector at i, ~Xi
is a k-variate Gaussian with mean and variance given by:

E
[
~Xi

]
= ~ωs,t + Φs,t E

[
~Xj

]
,

Var
[
~Xi

]
= Vs,t + Φs,t Var

[
~Xj

]
ΦT

s,t,
(S5)

where ~ωs,t, Φs,t and Vs,t are defined as in Defn. 3.

7.e ordinary least squares regressions

For calculating the linear regression lines of lg-brain-mass on lg-body-mass (fig.7.1), we use
the fact that for a bivariate normal distribution of two variables x and y with mean vector ~µ =

[E(x), E(y)]T and variance covariance matrix V =

[
σ2(x) σ(x, y)

σ(x, y) σ2(y)

]
, the linear regression

of y on x, i.e. the linear model y = a + bx + ε, has ordinary least squares (OLS) estimates for
the slope (b) and intercept (a) given by the equations:

b = σ(x, y)/σ2(x)
a = E(y)− bE(x).

(S6)

Using eq. S6, we calculated the intercept and the slope of the OLS regressions of lg-brain-
mass on lg-body-mass in the mammal data as follows (see also fig. 7.1):
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(a) First, we calculated the expected distributions of the two traits under the inferred
MPGM fit in the different backbone lineages (fig. 7.1) at seven past points in time lo-
cated at regular intervals of 27 Ma, starting from -162 Ma and ending at the present time.
For the calculation, we used the expected mean vector, ~µ = [E(lg− body−mass), E(lg−
brain−mass)]T and variance-covariance matrix V under the MGPM fit (eqs. S4 and S5,
Appendix 7.D).

(b) We additionally calculated an empirical regression based on the tip trait values, ignor-
ing the phylogenetic relationship in the tree. In particular, the empirical measurements
of the two traits for the tips in the tree stratified by inferred MGPM regime. We note
that these OLS regressions assume independency of the tips, neglecting the correlation
due to shared ancestry between the species in each regime. This is a known source
of bias (Felsenstein, 1985) motivating the use of PCMs. To do the OLS calculation, we
used eq. S6, plugging in the empirical mean and variance covariance matrices. We cross-
validated the resulting values for the coefficients with the slope and intercept obtained
from calling the R-function lm.

(c) Third, we calculated the empirical measurements of the two traits for all 629 tips in
the tree, using the empirical mean and variance-covariance matrices. The resulting OLS
estimates matched the values used as a reference for the calculation of encephalization
quotient (EQ) in (Boddy et al., 2012). Again, we stress that this regression line (dashed
grey regression lines on fig. 7.1) are calculated without accounting for the phylogenetic
correlation between the tips.

7.f third party libraries

The software packages accompanying this article rely on a number of third party libraries:
ape (Paradis, Claude, and Strimmer, 2004), Armadillo (Sanderson and Curtin, 2016), expm
(“expm: Matrix Exponential, Log”), mvtnorm (Genz and Bretz, 2009), data.table (Dowle et
al., 2014), ggplot2 (Wickham, 2009), ggtree (Yu et al., 2017), ggimage (“ggimage: Use Im-
age in ’ggplot2’”), foreach (“foreach: Foreach Looping Construct for R”), doMPI (“doMPI:
Foreach Parallel Adaptor for the Rmpi Package”), iterators (“iterators: Iterator Construct for
R”), digest (“digest: Create Compact Hash Digests of R Objects”), Rcpp (Eddelbuettel, 2013).
Additional tools used to generate the simulation data and to produce the figures and tables
include phytools (Revell, 2011), cowplot (“cowplot: Streamlined Plot Theme and Plot Annota-
tions for ’ggplot2’ [R package cowplot version 0.9.3]”), knitr (Xie, 2017), rmarkdown (Allaire
et al., 2014) and xtable (“xtable: Export Tables to LaTeX or HTML”).

7.g images used in fig . 7 .1

For fig. 7.1D, monochrome images were downloaded from http://phylopic.org. The vec-
torized or raster images were re-colored using Microsoft Office or Adobe Illustrator. The
images are licensed either under the Public Domain Dedication 1.0 license (hereby abbre-
viated as PDD 1.0) available at https://creativecommons.org/publicdomain/zero/1.0/, or
under the Creative Commons Attribution-ShareAlike 3.0 Unported license available at http:
//creativecommons.org/licenses/by-sa/3.0/ (hereby abbreviated as CCASAU 3.0). Below,
we list the images used, their authors, phylopic.org-ids and licenses:

• Cricetidae by Natasha Vitek: 81930c02-5f26-43f7-9c19-e9831e780e53, PDD 1.0;

https://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
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• Hystricognathi by Zimices: 8d4497e7-a1b4-49e8-9e02-23db5f9aa37c, CCASAU 3.0;

• Muridae by Daniel Jaron: 92989e35-4e68-4a2d-b3a2-191ba9da671a, PDD 1.0;

• Haplorrhini (1) by Gareth Monger: 24230275-1bfa-4ec2-a946-ca1ececdf216, CCASAU
3.0;

• Haplorrhini (2, Homo sapiens sapiens) by T. Michael Keesey 2b4c32f6-99d0-43ba-9180-
8013aa5bccd2, PDD 1.0;

• Cercopithecidae (uncredited), eccbb404-c99f-41f9-8785-01a7f57f1269, PDD 1.0;

• Marmotini by T. Michael Keesey 61440e34-7d24-4607-8479-2708ac45663f, PDD 1.0;

• Cetartiodactyla (1, Artiodactyla) by T. Michael Keesey 407f51d5-aa40-4e71-a5a7-7a6d6f328b5d,
PDD 1.0;

• Cetartiodactyla (2, Cetacea) by Scott Hartman e68270c1-3091-4aee-92ae-51341a40e94a,
PDD 1.0;

• Cetartiodactyla (3, Hippopotamus amphibius) by Jan A. Venter, Herbert H. T. Prins,
David A. Balfour & Rob Slotow (vectorized by T. Michael Keesey) , 6336f90c-8f02-48f5-
94d1-1d85c0100473, CCASAU 3.0;

• Microchiroptera by Yan Wong, 18bfd2fc-f184-4c3a-b511-796aafcc70f6, PDD 1.0;

• Soricidae by Becky Barnes, 822c549b-b29b-47eb-9fe3-dc5bbb0abccb, PDD 1.0;

• Sciuridae by Catherine Yasuda, 5ebe5f2c-2407-4245-a8fe-397466bb06da, PDD 1.0;

• Feliformia (uncredited), ec56fa32-947b-4f0c-976b-c456132f2d6e, PDD 1.0;

• Diprotodontia by Michael Scroggie, f5592cab-cc61-4aab-b1dd-fba7cd2df7c9, PDD 1.0;

• Euarchonta by T. Michael Keesey (after Joseph Wolf), 88a07585-846a-405d-9195-c15c010e7443,
PDD 1.0;

• Elephantidae by T. Michael Keesey, a15244a4-ecaa-4891-b870-31e5c8d9b5b3, PDD 1.0;

7.h simulations

We performed a benchmark on two-trait data simulated on ultrametric and non-ultrametric
birth-death trees of small (N=318) and big (N=638) sizes (figs. S5-S6).

The trees were generated using calls to the function pbtree from the R-package phytools
as follows:

• treeFossilSmall <- pbtree(n=200, scale=1, b = 1, d = 0.4) : generated a non-ultrametric
tree of size N = 318 (the size depends on the random generator seed).

• treeExtantSmall <- pbtree(n=318, scale=1, b = 1, d = 0.4, extant.only = TRUE) : generated
an ultrametric tree of size N = 318.

• treeFossilBig <- pbtree(n=374, scale=1, b = 1, d = 0.4) : generated a non-ultrametric tree
of size N = 638 (the size depends on the random generator seed).



174 mixed gaussian phylogenetic models

• treeExtantBig <- pbtree(n=638, scale=1, b = 1, d = 0.4, extant.only = TRUE) : generated
an ultrametric tree of size N = 638.

To match the time-scale of the mammal tree, we rescaled the branch-lengths in the trees so
that their total height would be equal to 166.2. This allowed to perform trait simulation and
ML-inference on the same scale for the parameters as in the analysis of the mammal data.

For each tree, we assigned two shift-point configurations as follows:

• 1 shift point, i.e. 2 regimes;

• 7 shift points, i.e. in 8 regimes.

For each shift-point configuration, we generated 4 random model type mappings drawing
random models from the set {BMA, BMB, OUC, OUD, OUE, OUF} as specified in the main
text. For each model mapping, we generated three random MGPMs drawing their parameter
sets from uniform distributions as follows:

• 0.05 6 ΣC,ii 6 0.5, i ∈ {1, 2} for all model types;

• 0.0 6 ΣC,12 6 0.2 for all model types;

• 0.1 6 HS,ii 6 4.0, i ∈ {1, 2} for all OU model types;

• −4.0 6 HS,12 6 4.0 for the OUE model type (keeping HS,21 = 0 to ensure symmetry of
the transformed matrix H);

• −4.0 6 HS,ij 6 4.0, i 6= j ∈ {1, 2} for the OUF model type;

• 3.0 6 θ1 6 6.0 for all OU model types;

• 2.0 6 θ2 6 4.0 for all OU model types;

Fixing the starting point to X0 = (1.0,−1.0)T, for each randomly drawn parameter-set, we
simulated two random data-sets, using the function PCMSim from the package PCMBase
(Mitov et al., 2018). This resulted in a total of 2× 2× 2× 4× 3× 2 = 192 simulated data-sets
(figs. S7-S14).

For each simulated data-set we ran an MGPM fit over the models {BMA, ..., OUF} speci-
fying the same boundaries for the parameters as in the mammal data analysis (see Model
parametrizations).

The recursive clade partition algorithm was run for each simulation with the same settings
as for the mammal data analysis, except for the number of parallel CPU cores which was
reduced from 300 to 100. All inferences were run on the Euler HPC.

7.h.1 Performance assessment

To evaluate the performance of a MGPM fit to a given simulated tree and data, we define six
criteria. The first criterion is how the AIC score of the best fit identified during the search
compares against the AIC score calculated for the true model used to generate the data on
the tree. If the AIC score of the best fit is bigger (worse) than the AIC of the simulated model,
we know for sure that the optimum of the AIC surface could not be found during the search.
Very likely the fit has been stuck in a local optimum, away from the true model. Conversely,
if the found AIC is smaller (better) than the true model’s AIC, there is a chance that the
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global optimum has been found. Still, this does not imply that the true model parameters are
located in the same valley of the AIC surface.

We defined five additional criteria, each one representing a question with a binary (positive
or negative) answer that can be asked either for every pair of nodes in the tree or for every
branch in the tree. We compare the answers to these questions given by the best MGPM
fit against the known true answers. The true positive rate (tpr, also known as sensitivity) is
calculated as the proportion of actual positive cases (pairs of nodes or branches, depending
on the criterion) that are correctly identified as positive by the fit. The false positive rate
(fpr, also known as 1− speci f icity) is calculated as the proportion of negative cases that are
wrongly identified as positive by the fit. The perfect fit to a given data and tree has fpr=0 and
tpr=1 for each criterion. The worse fit to a given data and tree has fpr=1 and tpr=0 for each
criterion. Equality between the tpr and the fpr for some criterion corresponds to a random
guess. Hence, we evaluate the performance of a fit for a given criterion as the point (fpr, tpr)
located inside the unit square. The five criteria are listed below:

1. Cluster: for each pair of nodes in the tree (internal and tip nodes), we ask if the branches
leading to these nodes evolve under the same regime (i.e. have the same color). The test
is positive if the two branches do belong to the same regime and negative otherwise.

2. OU process: for each branch in the tree, we ask whether it evolves under an OU model,
i.e. one of the models C, D, E, F. Note that this criterion can not be evaluated for model
mappings where none of the mapped model types was among C, D, E, F (all negative,
so impossible to calculate tpr) or all of the model types were among C, D, E, F (all
positive, so impossible to calculate fpr).

3. Correlated traits: for each branch in the tree, we ask whether the regime assigned to
that branch supports correlated traits, that is, the model type mapped to that regime is
among B, D, E, F. Similar to criterion 2, this criterion could not be evaluated for model
mappings where none of the mapped model types was among B, D, E, F or all of the
model types were among B, D, E, F.

4. NonDiagonal H: for each branch in the tree, we ask whether its regime has a non-
diagonal matrix H, that is, the model mapped to that regime is among the model types
E and F. Similar to criteria 2 and 3, this criterion could not be evaluated for model
mappings where none of the mapped model types was among E, F, or all of the model
types were among E, F.

5. Asymetric H: for each branch in the tree, we ask whether its regime has an asymetric
matrix H, that is, the model type mapped to that regime is F. Same considerations as
above apply when all or none of the mapped model types are equal to F.

Figs. S15-S16 show the performance for the 192 fits and table S1 summarizes the results
over different groupings of simulations. We comment on these results in the following para-
graphs.

small ultrametric trees with two regimes . We observed better AIC for all in-
ferred models (nearly all labels white in the first row of fig. S15). There was very good
performance with respect to criteria 1, 2 and 3 (excluding two simulations with fpr=1 for
criterion 3). For criterion 1 (Cluster), we observe fpr≈0 for nearly all simulations, but there
is a tendency towards tpr<1. This indicates a tendency of the best fit to have one or two
more regimes than the true number. For criteria 4 and 5 (NonDiagonal H, Asymmetric H)
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several of the MGPM fits were located at the diagonal, while all the others were located near
the ideal point (fpr=0,tpr=1), suggesting that the signal for accurately detecting these two
properties could depend strongly on the actual simulated data, as well as the model fit.

small non-ultrametric trees with two regimes . The presence of labels in black
in the second line of fig. S15 shows some tendency for the best found MGPM to be sub-
optimal with respect to the true model. The performance for the different criteria was slightly
worse for criterion 2, where several simulations had fpr>0, indicating a bias in favour of
the OU process. Due to the random assignment of model types, there were no simula-
tions containing both, regimes for correlated and regimes for non-correlated traits, hence
the empty panel for criterion 3 (Correlated traits). Numerous labels away from the ideal
point (fpr=0,tpr=1) for criteria 4 and 5 showed that making the tree non-ultrametric did
not improve the detectability of OU models with NonDiagonal or Asymmetric H matrices
- observing fpr≈0 while tpr<1 shows that, in both cases, the search for an optimal fit has
favoured the more parsimonous model, i.e. C or D instead of the true E or F for criterion 4

and C, D or E instead of the true F for criterion 5.

small ultrametric trees with eight regimes . With all labels in black on the third
row in fig. S15, it is clear that the search algorithm has failed to find the valley of the true
model in the MGPM space. Despite that, we still observe overall good performance for crite-
ria 1 and 2 and for some of the simulations in criterion 3. For criteria 4 and 5, though, most
of the labels were far away from the ideal with a concentration around (fpr=0, tpr=0).

small non-ultrametric trees with eight regimes . In this case, we observe a
better performance of the search algorithm (predominantly white labels). While the perfor-
mance is relatively similar fo the ultrametric case, there is a tendency for the white labels to
cluster closer to the ideal point, whereas black labels group closer to the red diagonal (criteria
2, 3, 4).

big trees . With big trees (fig. S16), the performance was similar to the performance in
small trees, with several exceptions: the segregation between white and black labels was
more pronounced, in particular for criterion 1, ultrametric trees with 2 regimes; the AIC for
the best fit for ultrametric trees with 8 regimes was overly better than the AIC of the true
model; the AIC for the best fit for non-ultrametric trees with 8 regimes was worse than the
AIC of the true model.

7.i supplementary figures
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(4) AIC=−149, logLik=105, p=31
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(6) AIC=−153, logLik=113, p=36
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(8) AIC=−159, logLik=120, p=41
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(10) AIC=−167, logLik=136, p=52

Figure S1: Search path of the recursive clade-partition algorithm in the mammal tree. As initializa-
tion step, each model-type is fit to each clade not smaller than a user-defined threshold,
q (here, q = 20). Each panel denoted by a number in parentheses (i) describes iteration i
of the main loop (line 11 in algorithm 7.1). The coloured node with a number i is the par-
tition root for the iteration. ColoNodes in grey represent the potential shift points - these
are descendants from the partition root, which have not been "cut out" by a shift and have
at least q descendants, themselves. Letters in braces denote the candidate model-types for
each shift-node. For the partition root (i), these are all model-types; for every other node,
this is the set {XY}, where X is the model-type assigned to the node in the best fit on the
entire tree found so far, and Y is the best model-type fit to the node’s clade during the
initial step.
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Figure S2: Search path of the recursive clade-partition algorithm in the mammal tree.



7.I supplementary figures 179

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ●● ● ●● ● ● ● ●● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●

1 Ma 10 Ma 100 Ma 1000 Ma

1. O
U

F
2. O

U
E

3. O
U

F
4. O

U
E

5. O
U

F
6. O

U
D

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

−2.5

0.0

2.5

5.0

lg(body−mass [g])

lg
(b

ra
in

−
m

as
s 

[g
])

Figure S3: Evolution of lg-brain and lg-body mass in mammals regimes 1 to 6. See also legend for
fig. 7.2 in the main text.
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Figure S4: Evolution of lg-brain and lg-body mass in mammals regimes 7 to 12. See also legend for
fig. 7.2 in the main text.
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A. ultrametric / 2 regimes B. ultrametric / 8 regimes

C. non−ultrametric / 2 regimes D. non−ultrametric / 8 regimes

Figure S5: Simulated small birth-death trees.
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A. ultrametric / 2 regimes B. ultrametric / 8 regimes

C. non−ultrametric / 2 regimes D. non−ultrametric / 8 regimes

Figure S6: Simulated big birth-death trees.
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Figure S7: Scatter plots of the simulated data-sets for small ultrametric trees with 2 regimes. In each
panel, each colored point represents the values of the two simulated traits (x and y) for one
tip in the tree. The number label in the top-left corner of each panel denotes the identifier
of the simulation, which can be used to look-up the simulated data in the testData_t2
data.table of the accompanying package TestPCMFit. The label denoted by capital letter
L denotes the log-likelihood of the data evaluated under the true model. A black point
denotes the starting trait value for each simulation. For non-ultrametric trees (figs. S11-
S14), the distance from the root is denoted by the transparency of the colored points, paler
points denoting closer distance to the root.
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Figure S8: Scatter plots of the simulated data-sets for small ultrametric trees with 8 regimes. See
legend for fig. S7.
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Figure S9: Scatter plots of the simulated data-sets for big ultrametric trees with 2 regimes. See
legend for fig. S7.
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Figure S10: Scatter plots of the simulated data-sets for big ultrametric trees with 8 regimes. See
legend for fig. S7.
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Figure S11: Scatter plots of the simulated data-sets for small non-ultrametric trees with 2 regimes.
See legend for fig. S7.
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Figure S12: Scatter plots of the simulated data-sets for small non-ultrametric trees with 8 regimes.
See legend for fig. S7.
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Figure S13: Scatter plots of the simulated data-sets for big non-ultrametric trees with 2 regimes. See
legend for fig. S7.
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Figure S14: Scatter plots of the simulated data-sets for big non-ultrametric trees with 8 regimes. See
legend for fig. S7.
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Figure S15: Performance of the MGPM inference in simulated data for small trees. The performance
is evaluated based on the true/false positive rate for each one of the five binary criteria,
explained in the text. The optimum is located at the top-left corner, i.e. when the true pos-
itive rate is equal to 1 and the false positive rate is equal to 0. The diagonal shown with a
red dashed line denotes the performance to be expected from a random predictor. Num-
bered labels denote the result for the inferred MGPM for the corresponding simulated
data (the numbers match with the ids on figs. S7-S14). Greener text denote proximity to
the optimum (0, 1), whereas redder text denotes proximity to the lower right corner (1,0).
The background color in each label denotes the comparison between the best inferred
AIC score against the AIC score for the true model - white background denotes that the
inferred model has an AIC at least as good (smaller or equal) as the AIC for the true model;
black background denotes that the inferred model has a worse (bigger) AIC compared to
the true model.
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Figure S16: Performance of the MGPM inference in simulated data for small trees. See legend for
fig. S15.
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Table S1: Summary of the simulation results

Crit. N #regimes Tree-type #tests Better AIC fpr tpr

Cluster 318 2 ultrametric 24 0.92 0.00 0.92

Cluster 318 2 non-ultrametric 24 0.67 0.00 0.77

Cluster 318 8 ultrametric 24 0.00 0.03 0.87

Cluster 318 8 non-ultrametric 24 0.50 0.04 0.84

Cluster 638 2 ultrametric 24 0.42 0.00 0.78

Cluster 638 2 non-ultrametric 24 0.92 0.00 0.89

Cluster 638 8 ultrametric 24 0.58 0.02 0.74

Cluster 638 8 non-ultrametric 24 0.08 0.02 0.87

OU process 318 2 ultrametric 6 1.00 0.06 1.00

OU process 318 2 non-ultrametric 12 0.67 0.21 1.00

OU process 318 8 ultrametric 18 0.00 0.16 0.94

OU process 318 8 non-ultrametric 18 0.61 0.20 0.97

OU process 638 2 ultrametric 6 0.33 0.17 1.00

OU process 638 2 non-ultrametric 6 0.83 0.00 1.00

OU process 638 8 ultrametric 24 0.58 0.17 0.99

OU process 638 8 non-ultrametric 24 0.08 0.15 0.98

Correlated traits 318 2 ultrametric 6 1.00 0.33 1.00

Correlated traits 318 2 non-ultrametric 0

Correlated traits 318 8 ultrametric 24 0.00 0.37 0.80

Correlated traits 318 8 non-ultrametric 24 0.50 0.29 0.71

Correlated traits 638 2 ultrametric 0

Correlated traits 638 2 non-ultrametric 6 0.83 0.17 0.99

Correlated traits 638 8 ultrametric 18 0.67 0.30 0.80

Correlated traits 638 8 non-ultrametric 24 0.08 0.28 0.74

NonDiagonal H 318 2 ultrametric 6 1.00 0.33 0.83

NonDiagonal H 318 2 non-ultrametric 12 0.67 0.14 0.61

NonDiagonal H 318 8 ultrametric 24 0.00 0.32 0.41

NonDiagonal H 318 8 non-ultrametric 24 0.50 0.24 0.51

NonDiagonal H 638 2 ultrametric 6 0.17 0.17 0.40

NonDiagonal H 638 2 non-ultrametric 6 0.83 0.17 0.83

NonDiagonal H 638 8 ultrametric 24 0.58 0.18 0.57

NonDiagonal H 638 8 non-ultrametric 24 0.08 0.15 0.52

Asymetric H 318 2 ultrametric 12 1.00 0.00 0.33

Asymetric H 318 2 non-ultrametric 18 0.67 0.06 0.27

Asymetric H 318 8 ultrametric 24 0.00 0.15 0.23

Asymetric H 318 8 non-ultrametric 18 0.50 0.11 0.28

Asymetric H 638 2 ultrametric 12 0.42 0.07 0.18

Asymetric H 638 2 non-ultrametric 6 0.83 0.00 0.00

Asymetric H 638 8 ultrametric 24 0.58 0.11 0.17

Asymetric H 638 8 non-ultrametric 18 0.06 0.11 0.30
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8G E N E R A L D I S C U S S I O N A N D O U T L O O K

In this thesis I’ve studied in detail several challenges encountered in the transfer of classical
phylogenetic comparative methods to big phylogenetically linked comparative data. Most
of the tools I’ve developed capitalize on the idea that, for Gaussian phylogenetic models, it
is possible to calculate the likelihood in linear time with respect to the number of tips in
the tree, through post-order tree traversal (pruning). The idea of pruning is not novel, see
e.g. (Felsenstein, 1973), but a major challenge is to generalize this idea to a large enough
biologically interpretable family of models. This task is now accomplished for a large family
of multiple trait models, namely GLInv, and for any type of phylogenetic tree.

In Chapter 1, I have listed the key assumptions for the parameters α and σ2 of an Ornstein-
Uhlenbeck process that need to be valid in order for the Ornstein-Uhlenbec process to be
a valid model of stabilizing selection. It is unlikely that these assumptions are met in any
of the contemporary applications of these models to real data (Losos, 2011). Hence, direct
interpretation of parameters like α is not possible. Rather, it is needed to study the patterns in
simulated data resulting from the combination of inferred model parameters and to compare
these patterns with the real data used for the parameter inference. This was my approach in
Chapter 3, where I’ve shown that the maximum likelihood parameters of an OU model fit
to HIV patient data from the UK generate far more accurate patterns than a BM fit to the
same data. The development of future PCMs should focus on automating this procedure of
comparing observable versus simulated patterns.

In Discussion of chapter 3, I pointed out an important issue with the POUMM model,
namely, the fact that the POUMM model assumes a homogeneous process of evolution along
the entire tree. It is highly doubtful that such a homogeneous process could represent the
dynamics in a socially heterogeneous group of HIV patients. The final result of this thesis
– the mixed Gaussian phylogenetic model provides an alternative to the POUMM, which
would address this issue. Hence, the application of MGPMs to the same data used for the
epidemiological analysis in Chapters 3 and 4 could be of interest for future work.

With that respect, the implementation of the mixed Gaussian phylogenetic model within
the PCMBase and PCMFit R-packages is an important achievement of this thesis. The pres-
ence of tools for fast inference of such a general family of models should move the focus
from the technical issues of fitting complex models to big data to the conceptual issue of
model identifiability and interpretability. For example, many questions regarding the identi-
fiability of Ornstein-Uhlenbeck models are poorly understood. In particular, it is not known
whether it is possible to infer jointly the trait values at the ancestral nodes and the long-term
optimum in an ultrametric tree when different lineages follow different rates of evolution.
Other models of evolution, such as Ornstein-Uhlenbeck models of punctuated equilibrium
and acceleration/deceleration models of adaptive radiation, can easily be introduced within
the PCMBase package, but need to be studied in detail before attempting their inference.

A related major challenge for future development is the quantification of the uncertainty
of the model parameter estimates in fits of the mixed Gaussian phylogenetic model. Bayesian
reversible jump sampling (Uyeda and Harmon, 2014) is a candidate solution, but its appli-
cability in practice is questionnable, due to the high dimensionality of these models and the
poor potential for parallelizing MCMC sampling.
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Another direction of development is the application of the models described here to other
types of continuous trait data. In particular, it is possible to infer MGPM models on gene
expression profile comparative data. Linking patterns of evolution of the gene expression
profile to other types of phenotypic data could enable discoveries of novel gene–phenotype
pathways.

I will be glad to see some of the above ideas develop in real projects. My wildest hope is
that some of the tools developed through this thesis would become widely used by evolu-
tionary biologists around the world.
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